scholarly journals Effectiveness of Safety Interventions in Fire Engines to Reduce Potential Airborne Transmission of SARS-CoV-2

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 98
Author(s):  
Elmar Bourdon ◽  
Thomas Schaefer ◽  
Maximilian Kittel ◽  
Matthias Raedle ◽  
Alexandra Heininger

Physical distancing and wearing a face mask are key interventions to prevent COVID-19. While this remains difficult to practice for millions of firefighters in fire engines responding to emergencies, the delayed forthcoming of evidence on the effectiveness of such safety interventions in this setting presents a major problem. In this field experimental study, we provided initial evidence to close this gap. We examined total aerosol burden in the cabin of a fire engine whilst manipulating crew size, use of FFP2 respirators and use of SCBA full-face masks during 15-min driving periods. At the same time, we controlled for crew activity and speaking, vehicle speed, cabin ventilation, cabin air temperature, pressure and humidity. Limiting the crew size, using FFP2 respirators and not donning SCBA full-face masks was associated with a reduction of the arithmetic mean of total aerosol burden of up to 49%. This study provided initial evidence on the effectiveness of safety interventions in fire engines to reduce potential airborne transmission of SARS-CoV-2 through aerosols. More research about the physical and the clinical effectiveness of such safety interventions is needed.

Author(s):  
Elmar Bourdon ◽  
Thomas Schaefer ◽  
Maximilian Kittel ◽  
Matthias Raedle ◽  
Alexandra Heininger

Physical distancing and wearing a face mask are key interventions to prevent COVID-19. While this remains difficult to practice for millions of firefighters in fire engines responding to emergencies, the delayed forthcoming of evidence on the physical effectiveness of such safety interventions in this setting presents a major problem. In this field experimental study, we provided initial evidence to close this gap. We examined total aerosol burden in the cabin of a fire engine whilst manipulating crew size, natural ventilation, use of FFP2 respirators and use of SCBA full-face masks during 15-minute driving periods. At the same time, we controlled for crew activity and speaking, vehicle speed, cabin air temperature, pressure and humidity. Limiting the crew size, using FFP2 respirators and not donning SCBA full-face masks was associated with a reduction of the arithmetic mean of total aerosol burden of up to 49%. Natural ventilation as tested in this study was associated with both an increase and a decrease of total aerosol burden. This study provided initial evidence on the physical effectiveness of safety interventions in fire engines to reduce potential airborne transmission of SARS-CoV-2 through aerosols. More research about the physical and clinical effectiveness of such safety interventions is needed.


1993 ◽  
Author(s):  
K. R. Jones ◽  
L. J. Crepeau
Keyword(s):  

2006 ◽  
Vol 3 (3) ◽  
pp. 131-136 ◽  
Author(s):  
D.J. Marlin ◽  
V. Adams ◽  
A. Greenwood ◽  
E. Case ◽  
M. Roberts ◽  
...  

AbstractSeveral studies have shown that the placement of a face mask on a horse can have effects on ventilation, gas exchange and the cardiovascular system during exercise. The aim of the present study was to determine if airflow and ventilation measured with the same ultrasonic flowmeters were different during exercise between horses wearing half- (HM) and full-face (FM) masks. Five clinically healthy Thoroughbred horses with no history of respiratory disease were studied in an unbalanced crossover design. They were exercised on a treadmill at speeds between 1.7 and 11ms−1 on a 3° incline wearing both masks. The following variables were recorded: peak inspired (PIF) and peak expired flow rates (PEF), inspiratory tidal volume (VT), respiratory rate (fR ), inspiratory minute ventilation (VE), inspiratory time, (TI), expiratory time (TE ), total breath time (TT), end tidal oxygen (ETO2), end tidal carbon dioxide (ETCO2) and heart rate (HR). A mask by speed of exercise interaction term was not significant for any of the models. The PEF (mean difference 12.91s−1; lower and upper 95% CI 7.6 and 18.21s−1, respectively; P<0.0001) and ETO2 (mean difference 0.77%; lower and upper 95% CI 0.48 and 1.00%, respectively; P<0.0001) were significantly greater and ETCO2 was significantly lower (mean difference −1.3%; lower and upper 95% CI −2.0 and 0.7%, respectively; P<0.0001) with the FM compared with the HM. There was also a trend for inspired VE to be higher with the FM compared with the HM (mean difference 1021min−1; lower and upper 95% CI 26 and 1781 min−1, respectively; non-significant). We conclude that the HM may impair ventilation in the horse during exercise compared with the FM, despite the latter having a greater deadspace.


Author(s):  
Suraj Bhat ◽  
Naman Doshi ◽  
Chetanya Dev Bharadwaj ◽  
S. N. Singh ◽  
Younus Patel ◽  
...  
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document