scholarly journals A Near-Shore Linear Wave Model with the Mixed Finite Volume and Finite Difference Unstructured Mesh Method

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 199
Author(s):  
Yong G. Lai ◽  
Han Sang Kim

The near-shore and estuary environment is characterized by complex natural processes. A prominent feature is the wind-generated waves, which transfer energy and lead to various phenomena not observed where the hydrodynamics is dictated only by currents. Over the past several decades, numerical models have been developed to predict the wave and current state and their interactions. Most models, however, have relied on the two-model approach in which the wave model is developed independently of the current model and the two are coupled together through a separate steering module. In this study, a new wave model is developed and embedded in an existing two-dimensional (2D) depth-integrated current model, SRH-2D. The work leads to a new wave–current model based on the one-model approach. The physical processes of the new wave model are based on the latest third-generation formulation in which the spectral wave action balance equation is solved so that the spectrum shape is not pre-imposed and the non-linear effects are not parameterized. New contributions of the present study lie primarily in the numerical method adopted, which include: (a) a new operator-splitting method that allows an implicit solution of the wave action equation in the geographical space; (b) mixed finite volume and finite difference method; (c) unstructured polygonal mesh in the geographical space; and (d) a single mesh for both the wave and current models that paves the way for the use of the one-model approach. An advantage of the present model is that the propagation of waves from deep water to shallow water in near-shore and the interaction between waves and river inflows may be carried out seamlessly. Tedious interpolations and the so-called multi-model steering operation adopted by many existing models are avoided. As a result, the underlying interpolation errors and information loss due to matching between two meshes are avoided, leading to an increased computational efficiency and accuracy. The new wave model is developed and verified using a number of cases. The verified near-shore wave processes include wave shoaling, refraction, wave breaking and diffraction. The predicted model results compare well with the analytical solution or measured data for all cases.

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 52
Author(s):  
Marcel Zijlema

This paper discusses the discretization methods that have been commonly employed to solve the wave action balance equation, and that have gained a renewed interest with the widespread use of unstructured grids for third-generation spectral wind-wave models. These methods are the first-order upwind finite difference and first-order vertex-centered upwind finite volume schemes for the transport of wave action in geographical space. The discussion addresses the derivation of these schemes from a different perspective. A mathematical framework for mimetic discretizations based on discrete calculus is utilized herein. A key feature of this algebraic approach is that the process of exact discretization is segregated from the process of interpolation, the latter typically involved in constitutive relations. This can help gain insight into the performance characteristics of the discretization method. On this basis, we conclude that the upwind finite difference scheme captures the wave action flux conservation exactly, which is a plus for wave shoaling. In addition, we provide a justification for the intrinsic low accuracy of the vertex-centred upwind finite volume scheme, due to the physically inaccurate but common flux constitutive relation, and we propose an improvement to overcome this drawback. Finally, by way of a comparative demonstration, a few test cases is introduced to establish the ability of the considered methods to capture the relevant physics on unstructured triangular meshes.


2021 ◽  
Vol 5 (2) ◽  
pp. 13
Author(s):  
Kaspar A. Schindler ◽  
Tobias Nef ◽  
Maxime O. Baud ◽  
Athina Tzovara ◽  
Gürkan Yilmaz ◽  
...  

Neurology is focused on a model where patients receive their care through repeated visits to clinics and doctor’s offices. Diagnostic tests often require expensive and specialized equipment that are only available in clinics. However, this current model has significant drawbacks. First, diagnostic tests, such as daytime EEG and sleep studies, occur under artificial conditions in the clinic, which may mask or wrongly emphasize clinically important features. Second, early detection and high-quality management of chronic neurological disorders require repeat measurements to accurately capture the dynamics of the disease process, which is impractical to execute in the clinic for economical and logistical reasons. Third, clinic visits remain inaccessible to many patients due to geographical and economical circumstances. Fourth, global disruptions to daily life, such as the one caused by COVID-19, can seriously harm patients if access to in-person clinical visits for diagnostic and treatment purposes is throttled. Thus, translating diagnostic and treatment procedures to patients’ homes will convey multiple substantial benefits and has the potential to substantially improve clinical outcomes while reducing cost. NeuroTec was founded to accelerate the re-imagining of neurology and to promote the convergence of technological, scientific, medical and societal processes. The goal is to identify and validate new digital biomarkers that can close the last mile in neurology by enabling the translation of personalized diagnostics and therapeutic interventions from the clinic to the patient’s home.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Feng Huang ◽  
Jianguo Lyu ◽  
Guihe Wang ◽  
Hongyan Liu

Vacuum tube dewatering method and light well point method have been widely used in engineering dewatering and foundation treatment. However, there is little research on the calculation method of unsaturated seepage under the effect of vacuum pressure which is generated by the vacuum well. In view of this, the one-dimensional (1D) steady seepage law of unsaturated soil in vacuum field has been analyzed based on Darcy’s law, basic equations, and finite difference method. First, the gravity drainage ability is analyzed. The analysis presents that much unsaturated water can not be drained off only by gravity effect because of surface tension. Second, the unsaturated vacuum seepage equations are built up in conditions of flux boundary and waterhead boundary. Finally, two examples are analyzed based on the relationship of matric suction and permeability coefficient after boundary conditions are determined. The results show that vacuum pressure will significantly enhance the drainage ability of unsaturated water by improving the hydraulic gradient of unsaturated water.


2017 ◽  
Vol 14 (03) ◽  
pp. 415-454 ◽  
Author(s):  
Ujjwal Koley ◽  
Nils Henrik Risebro ◽  
Christoph Schwab ◽  
Franziska Weber

This paper proposes a finite difference multilevel Monte Carlo algorithm for degenerate parabolic convection–diffusion equations where the convective and diffusive fluxes are allowed to be random. We establish a notion of stochastic entropy solutions to these equations. Our chief goal is to efficiently compute approximations to statistical moments of these stochastic entropy solutions. To this end, we design a multilevel Monte Carlo method based on a finite volume scheme for each sample. We present a novel convergence rate analysis of the combined multilevel Monte Carlo finite volume method, allowing in particular for low [Formula: see text]-integrability of the random solution with [Formula: see text], and low deterministic convergence rates (here, the theoretical rate is [Formula: see text]). We analyze the design and error versus work of the multilevel estimators. We obtain that the maximal rate (based on optimizing possibly the pessimistic upper bounds on the discretization error) is obtained for [Formula: see text], for finite volume convergence rate of [Formula: see text]. We conclude with numerical experiments.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 423-431 ◽  
Author(s):  
Sebastien F. Matringe ◽  
Ruben Juanes ◽  
Hamdi A. Tchelepi

Summary The accuracy of streamline reservoir simulations depends strongly on the quality of the velocity field and the accuracy of the streamline tracing method. For problems described on complex grids (e.g., corner-point geometry or fully unstructured grids) with full-tensor permeabilities, advanced discretization methods, such as the family of multipoint flux approximation (MPFA) schemes, are necessary to obtain an accurate representation of the fluxes across control volume faces. These fluxes are then interpolated to define the velocity field within each control volume, which is then used to trace the streamlines. Existing methods for the interpolation of the velocity field and integration of the streamlines do not preserve the accuracy of the fluxes computed by MPFA discretizations. Here we propose a method for the reconstruction of the velocity field with high-order accuracy from the fluxes provided by MPFA discretization schemes. This reconstruction relies on a correspondence between the MPFA fluxes and the degrees of freedom of a mixed finite-element method (MFEM) based on the first-order Brezzi-Douglas-Marini space. This link between the finite-volume and finite-element methods allows the use of flux reconstruction and streamline tracing techniques developed previously by the authors for mixed finite elements. After a detailed description of our streamline tracing method, we study its accuracy and efficiency using challenging test cases. Introduction The next-generation reservoir simulators will be unstructured. Several research groups throughout the industry are now developing a new breed of reservoir simulators to replace the current industry standards. One of the main advances offered by these next generation simulators is their ability to support unstructured or, at least, strongly distorted grids populated with full-tensor permeabilities. The constant evolution of reservoir modeling techniques provides an increasingly realistic description of the geological features of petroleum reservoirs. To discretize the complex geometries of geocellular models, unstructured grids seem to be a natural choice. Their inherent flexibility permits the precise description of faults, flow barriers, trapping structures, etc. Obtaining a similar accuracy with more traditional structured grids, if at all possible, would require an overwhelming number of gridblocks. However, the added flexibility of unstructured grids comes with a cost. To accurately resolve the full-tensor permeabilities or the grid distortion, a two-point flux approximation (TPFA) approach, such as that of classical finite difference (FD) methods is not sufficient. The size of the discretization stencil needs to be increased to include more pressure points in the computation of the fluxes through control volume edges. To this end, multipoint flux approximation (MPFA) methods have been developed and applied quite successfully (Aavatsmark et al. 1996; Verma and Aziz 1997; Edwards and Rogers 1998; Aavatsmark et al. 1998b; Aavatsmark et al. 1998c; Aavatsmark et al. 1998a; Edwards 2002; Lee et al. 2002a; Lee et al. 2002b). In this paper, we interpret finite volume discretizations as MFEM for which streamline tracing methods have already been developed (Matringe et al. 2006; Matringe et al. 2007b; Juanes and Matringe In Press). This approach provides a natural way of reconstructing velocity fields from TPFA or MPFA fluxes. For finite difference or TPFA discretizations, the proposed interpretation provides mathematical justification for Pollock's method (Pollock 1988) and some of its extensions to distorted grids (Cordes and Kinzelbach 1992; Prévost et al. 2002; Hægland et al. 2007; Jimenez et al. 2007). For MPFA, our approach provides a high-order streamline tracing algorithm that takes full advantage of the flux information from the MPFA discretization.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1147 ◽  
Author(s):  
Shanju Zhang ◽  
Liangsheng Zhu ◽  
Jianhua Li

The prediction of wave transformation and associated hydrodynamics is essential in the design and construction of reef top structures on fringing reefs. To simulate the transformation process with better accuracy and time efficiency, a shock-capturing numerical model based on the extended Boussinesq equations suitable for rapidly varying topography with respect to wave transformation, breaking and runup, is established. A hybrid finite volume–finite difference scheme is used to discretize conservation form of the extended Boussinesq equations. The finite-volume method with a HLL Riemann solver is applied to the flux terms, while finite-difference discretization is applied to the remaining terms. The fourth-order MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme is employed to create interface variables, with in which the van-Leer limiter is adopted to improve computational accuracy on complex topography. Taking advantage of van-Leer limiter, a nested model is used to take account of both computational run time and accuracy. A modified eddy viscosity model is applied to better accommodate wave breaking on steep reef slopes. The established model is validated with laboratory measurements of regular and irregular wave transformation and breaking on steep fringing reefs. Results show the model can provide satisfactory predictions of wave height, mean water level and the generation of higher harmonics.


Sign in / Sign up

Export Citation Format

Share Document