scholarly journals Vortex Dynamics Study and Flow Visualization on Aircraft Model with Different Canard Configurations

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 144
Author(s):  
Setyawan Bekti Wibowo ◽  
Budi Basuki ◽  
Sutrisno ◽  
Tri Agung Rohmat ◽  
Soeadgihardo Siswantoro ◽  
...  

Canard configuration on fighter planes is essential for regulating flow and the occurrence of vortex interactions on the main wing, one of which is to delay stall. Stall delays are useful when the aircraft is making maneuvering or short-landing. This study observed the effect of canard configuration on various fighter aircraft models. Fighter models represented the different canard configurations, such as Sukhoi SU-30 MKI, Chengdu J-10, and Eurofighter Typhoon. Water tunnels and computational fluid dynamics (CFD) have made it easier to visualize the flow and aerodynamic forces. The results showed that at a low angle of attack (AoA) < 30°, the Chengdu J-10 and Eurofighter models had the highest lift force coefficient (Cl). When at high AoA, Cl’s highest value occurred on the Sukhoi SU-30 model with a value of 1.45 at AoA 50°. Meanwhile, the highest AoA that still had a high Cl value occurred on the Sukhoi SU-30 and Chengdu J-10 aircraft models, namely at AoA 55° with Cl values more than 1.1. The canard position in the upper of the wing would increase the Cl at low AoA, while the parallel canard position could delay the stall.

Author(s):  
Nazia Binte Munir ◽  
Kyoungsoo Lee ◽  
Ziaul Huque ◽  
Raghava R. Kommalapati

The main purpose of the paper is to use Computational Fluid Dynamics (CFD) in 3-D analysis of aerodynamic forces of a Horizontal Axis Wind Turbine (HAWT) blade and compare the 3-D results with the 2-D experimental results. The National Renewable Energy Laboratory (NREL) Phase VI wind blade profile is used as a model for the analysis. The results are compared with the experimental data obtained by NREL at NASA Ames Research Center for the NREL Phase VI wind turbine blade. The aerodynamic forces are evaluated using 3-D Computational Fluid Dynamics (CFD) simulation. The commercial ANSYS CFX and parameterized 3-D CAD model of NREL Phase VI are used for the analysis. The Shear Stress Transport (SST) Gamma-Theta turbulence model and 0-degree yaw angle condition are adopted for CFD analysis. For the case study seven varying wind speeds (5 m/s, 7 m/s, 10 m/s, 13 m/s, 15 m/s, 20 m/s, 25 m/s) with constant blade rotational speed (72 rpm) are considered. To evaluate the 3-D aerodynamic effect sectional pressure coefficient (Cp) and integrated forces about primary axis such as normal, tangential, thrust and torque are evaluated for each of the seven wind speed cases and compared with the NREL experimental values. The numerical difference of values on wind blade surface between this study and 3-D results of NREL wind tunnel test are found negligible. The paper represents an important comparison between the 3-D lift & drag coefficient with the NREL 2-D experimental data. The results shows that though the current study is in good agreement with NREL 3-D experimental values there is large deviation between the NREL 2-D experimental data and current 3-D study which suggests that in case of 3-D analysis of aerodynamic force of blade surface it is better to use NREL 3-D values instead of 2-D experimental values.


2021 ◽  
Vol 12 (2) ◽  
pp. 475-485
Author(s):  
Andreas Maulana Irsabudi ◽  
◽  
Gaguk Jatisukamto ◽  
Hary Sutjahjono

Seaplanes are aircraft that can take off and landing on water. A seaplane’s requirement is its need to take off and landing on watery conditions which is equipped with a pontoon. Pontoon of a seaplane needs to be evaluated in terms of aerodynamics characteristics when a seaplane flies. The purpose of this study is to determine the correlation of various geometric combinations of deadrise angle, step height, and constant cross-section length with the values of coefficient of drag (CD), coefficient of lift (CL) and coefficient of moment (CM). The methodology was carried out by simulating Computational Fluid Dynamics (CFD) using OpenFOAM software. The results of this study could be concluded that deadrise angle affected coefficient of drag (CD), coefficient of lift (CL) and coefficient of moment (CM) with each value of 0.0055, 0.0044, -0.0036, while step height didn’t influence significantly on coefficient of drag (CD) and didn’t affect coefficient of lift (CL) and coefficient of moment (CM). Constant cross-section length didn’t affect significantly on coefficient of drag (CD) and coefficient of lift (CL) but increasing constant cross-section length increased coefficient of moment (CM) with a value of -0.0039.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Vol 54 ◽  
pp. 102207
Author(s):  
Cristian Inostroza ◽  
Alessandro Solimeno ◽  
Joan García ◽  
José M. Fernández-Sevilla ◽  
F. Gabriel Acién

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 332
Author(s):  
Hong Yong Sohn ◽  
De-Qiu Fan ◽  
Amr Abdelghany

The development of a novel ironmaking technology based on fine iron ore concentrate in a flash reactor is summarized. The design of potential industrial reactors for flash ironmaking based on the computational fluid dynamics technique is described. Overall, this simulation work has shown that the size of the reactor used in the novel flash ironmaking technology (FIT) can be quite reasonable vis-à-vis the blast furnaces. A flash reactor of 12 m diameter and 35 m height with a single burner operating at atmospheric pressure would produce 1.0 million tons of iron per year. The height can be further reduced by either using multiple burners, preheating the feed gas, or both. The computational fluid dynamics (CFD)-based design of potential industrial reactors for flash ironmaking pointed to a number of features that should be incorporated. The flow field should be designed in such a way that a larger portion of the reactor is used for the reduction reaction but at the same time excessive collision of particles with the wall must be avoided. Further, a large diameter-to-height ratio that still allows a high reduction degree should be used from the viewpoint of decreased heat loss. This may require the incorporation of multiple burners and solid feeding ports.


Sign in / Sign up

Export Citation Format

Share Document