A Study of Aerodynamics Force Evaluation of Horizontal Axis Wind Turbine (HAWT) Blade Using 2D and 3D Comparison

Author(s):  
Nazia Binte Munir ◽  
Kyoungsoo Lee ◽  
Ziaul Huque ◽  
Raghava R. Kommalapati

The main purpose of the paper is to use Computational Fluid Dynamics (CFD) in 3-D analysis of aerodynamic forces of a Horizontal Axis Wind Turbine (HAWT) blade and compare the 3-D results with the 2-D experimental results. The National Renewable Energy Laboratory (NREL) Phase VI wind blade profile is used as a model for the analysis. The results are compared with the experimental data obtained by NREL at NASA Ames Research Center for the NREL Phase VI wind turbine blade. The aerodynamic forces are evaluated using 3-D Computational Fluid Dynamics (CFD) simulation. The commercial ANSYS CFX and parameterized 3-D CAD model of NREL Phase VI are used for the analysis. The Shear Stress Transport (SST) Gamma-Theta turbulence model and 0-degree yaw angle condition are adopted for CFD analysis. For the case study seven varying wind speeds (5 m/s, 7 m/s, 10 m/s, 13 m/s, 15 m/s, 20 m/s, 25 m/s) with constant blade rotational speed (72 rpm) are considered. To evaluate the 3-D aerodynamic effect sectional pressure coefficient (Cp) and integrated forces about primary axis such as normal, tangential, thrust and torque are evaluated for each of the seven wind speed cases and compared with the NREL experimental values. The numerical difference of values on wind blade surface between this study and 3-D results of NREL wind tunnel test are found negligible. The paper represents an important comparison between the 3-D lift & drag coefficient with the NREL 2-D experimental data. The results shows that though the current study is in good agreement with NREL 3-D experimental values there is large deviation between the NREL 2-D experimental data and current 3-D study which suggests that in case of 3-D analysis of aerodynamic force of blade surface it is better to use NREL 3-D values instead of 2-D experimental values.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4983 ◽  
Author(s):  
Miguel Sumait Sy ◽  
Binoe Eugenio Abuan ◽  
Louis Angelo Macapili Danao

Wind energy is one of the fastest growing renewable energy sources, and the most developed energy extraction device that harnesses this energy is the Horizontal Axis Wind Turbine (HAWT). Increasing the efficiency of HAWTs is one important topic in current research with multiple aspects to look at such as blade design and rotor array optimization. This study looked at the effect of wingtip devices, a split winglet, in particular, to reduce the drag induced by the wind vortices at the blade tip, hence increasing performance. Split winglet implementation was done using computational fluid dynamics (CFD) on the National Renewable Energy Lab (NREL) Phase VI sequence H. In total, there are four (4) blade configurations that are simulated, the base NREL Phase VI sequence H blade, an extended version of the previous blade to equalize length of the blades, the base blade with a winglet and the base blade with split winglet. Results at wind speeds of 7 m/s to 15 m/s show that adding a winglet increased the power generation, on an average, by 1.23%, whereas adding a split winglet increased it by 2.53% in comparison to the extended blade. The study also shows that the increase is achieved by reducing the drag at the blade tip and because of the fact that the winglet and split winglet generating lift themselves. This, however, comes at a cost, i.e., an increase in thrust of 0.83% and 2.05% for the blades with winglet and split winglet, respectively, in comparison to the extended blade.


Author(s):  
Sanjay Nikhade ◽  
Suhas Kongre ◽  
S. B. Thakre ◽  
S. S. Khandare

This paper presents a combined experimental and Computational Fluid Dynamics (CFD) simulation of Micro wind Turbine with 2.28 meters rotor Diameter is performed using the FLUENT 16.2 WORKBENCH. A Micro Horizontal Axis Three Blade Wind Turbine was designed, developed and tested for power performance on new airfoil AFN2016 Designed. The three blades were fabricated from glass fiber with a rotor swept area of 3.14 sq.m for the 1-meter length of the blade and angle of attack experimentally determined to be 5º.The blade is designed for tip speed ratio (TSR) of 7. The power out measured for wind speed from 3.0m/s to 9.0 m/s. The comparison of the CFD and experimental results on the relationship between the power obtained and the wind speed of the wind turbine at the wind from 3-9 m/s. It can be clearly seen that the experimental data match quite well again with the numerical analysis and they both demonstrated that the power of wind turbine increasing with wind speed increases.


2018 ◽  
Vol 154 ◽  
pp. 01111
Author(s):  
Y. Fredrika Littik ◽  
Y. Heru Irawan ◽  
M. Agung Bramantya

Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT). This research aims to investigating the influence of front rotor diameter variation (D1) with rear rotor (D2) to the angular velocity optimal (ω) and tip speed ratio (TSR) on counter rotating wind turbines (CRWT). The method used transient 3D simulation with computational fluid dynamics (CFD) to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT) is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2) are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2) 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


2020 ◽  
Vol 12 (2) ◽  
pp. 168781401984047
Author(s):  
Wonyoung Jeon ◽  
Jeanho Park ◽  
Seungro Lee ◽  
Youngguan Jung ◽  
Yeesock Kim ◽  
...  

An experimental and analytical method to evaluate the performance of a loop-type wind turbine generator is presented. The loop-type wind turbine is a horizontal axis wind turbine with a different shaped blade. A computational fluid dynamics analysis and experimental studies were conducted in this study to validate the performance of the computational fluid dynamics method, when compared with the experimental results obtained for a 1/15 scale model of a 3 kW wind turbine. Furthermore, the performance of a full sized wind turbine is predicted. The computational fluid dynamics analysis revealed a sufficiently large magnitude of external flow field, indicating that no factor influences the flow other than the turbine. However, the experimental results indicated that the wall surface of the wind tunnel significantly affects the flow, due to the limited cross-sectional size of the wind tunnel used in the tunnel test. The turbine power is overestimated when the blockage ratio is high; thus, the results must be corrected by defining the appropriate blockage factor (the factor that corrects the blockage ratio). The turbine performance was corrected using the Bahaj method. The simulation results showed good agreement with the experimental results. The performance of an actual 3 kW wind turbine was also predicted by computational fluid dynamics.


2018 ◽  
Vol 42 (2) ◽  
pp. 128-135 ◽  
Author(s):  
S Horb ◽  
R Fuchs ◽  
A Immas ◽  
F Silvert ◽  
P Deglaire

NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient ( Cp) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.


Sign in / Sign up

Export Citation Format

Share Document