scholarly journals Numerical and Analytical Studies of Soret-Driven Convection Flow Inside an Annular Horizontal Porous Cavity

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 357
Author(s):  
Abdelkader Mojtabi ◽  
Khairi Sioud ◽  
Alain Bergeon ◽  
Marie Catherine Charrier-Mojtabi

This paper studies the species separation of a binary fluid in a porous cavity between two horizontal concentric cylinders, submitted to a temperature gradient. The thickness of the cavity is e=Ro−Ri, where Ri and Ro are the internal and external radius, respectively. The numerous previous experiments performed in thermogravitational vertical columns (TGCs) showed that in order to obtain a significant separation, the thickness of the cell must be very small, compared with its height. Therefore, in our configuration, we considered e≪Ri. The solution is assumed to be axisymmetric. Under the assumptions of parallel flow and forgotten effect, an analytical solution is obtained using Maple software, and the results are compared with those found numerically using Comsol Multiphysics. In natural convection, our results are in very good agreement with those evaluated with a regular perturbation method in powers of the dimensionless gap width ε=eRi  of order 15, and with the Galerkin method. The species separation calculated for our configuration is very close to the one obtained in a TGC column of height: H=πRi. One of the main interests of the analytical solution presented here is that it can be used as a basic solution for a stability study analysis.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


An analytical solution of Riemann’s equations for the one-dimensional propagation of sound waves of finite amplitude in a gas obeying the adiabatic law p = k ρ γ is obtained for any value of the parameter γ. The solution is in the form of a complex integral involving an arbitrary function which is found from the initial conditions by solving a generalization of Abel’s integral equation. The results are applied to the problem of the expansion of a gas cloud into a vacuum.


2007 ◽  
Vol 32 (6) ◽  
pp. 473-488
Author(s):  
Paolo Toti ◽  
Ludovico Sbordone ◽  
Carolina Sbordone ◽  
Carlo Bauer

2005 ◽  
Vol 128 (4) ◽  
pp. 397-404 ◽  
Author(s):  
A. D. Sommers ◽  
A. M. Jacobi

The fin efficiency of a high-thermal-conductivity substrate coated with a low-thermal-conductivity layer is considered, and an analytical solution is presented and compared to alternative approaches for calculating fin efficiency. This model is appropriate for frost formation on a round-tube-and-fin metallic heat exchanger, and the problem can be cast as conduction in a composite two-dimensional circular cylinder on a one-dimensional radial fin. The analytical solution gives rise to an eigenvalue problem with an unusual orthogonality condition. A one-term approximation to this new analytical solution provides fin efficiency calculations of engineering accuracy for a range of conditions, including most frosted-coated metal fins. The series solution and the one-term approximation are of sufficient generality to be useful for other cases of a low-thermal-conductivity coating on a high-thermal-conductivity substrate.


Sign in / Sign up

Export Citation Format

Share Document