scholarly journals Pipeline Condition Assessment by Instantaneous Frequency Response over Hydroinformatics Based Technique—An Experimental and Field Analysis

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 373
Author(s):  
Muhammad Hanafi Yusop ◽  
Mohd Fairusham Ghazali ◽  
Mohd Fadhlan Mohd Yusof ◽  
Muhammad Aminuddin Pi Remli

A common issue in water infrastructure is that it suffers from leakage. The hydroinformatics technique for recognizing the presence of leaks in the pipeline system by means of pressure transient analysis was briefly explored in this study. Various studies have been done of improvised leak detection methods, and Hilbert Huang Transform has the potential to overcome the concern. The HHT processing algorithm has been successfully proven through simulation and experimentally tested to evaluate the ability of pressure transient analysis to predict and locate the leakage in the pipeline system. However, HHT relies on the selection of the suitable IMF in the pre-processing phase which will determine the precision of the estimated leak location. This paper introduces a NIKAZ filter technique for automatic selector of Intrinsic Mode Function (IMF). A laboratory-scale experimental test platform was constructed with a 68-metre long Medium Polyethylene (MDPE) pipe with 63 mm in diameter used for this study and equipped with a circular orifice as an artificial leak in varying sizes with a system of 2 bar to 4 bar water pressure. The results showed that, although with a low ratio of signal-to-noise, the proposed method could be used as an automatic selector for Intrinsic Mode Function (IMF). Experimental tests showed the efficiency, and the work method was successful as an automatic selector of IMF. The proposed mathematical algorithm was then finally evaluated on field measurement tested on-site of a real pipeline system. The results recommended NIKAZ as an automatic selector of IMF to increase the degree of automation of HHT technique, subsequently enhancing the detection and identification of water pipeline leakage.

2018 ◽  
Vol 221 ◽  
pp. 02002 ◽  
Author(s):  
Hanafi M. Yusop ◽  
M.F. Ghazali ◽  
M.F.M. Yusof ◽  
M.A.Pi Remli ◽  
M. Samykano

Pressure transient analysis has been widely used to monitor the condition of pipelines and its assessment in water distribution systems. This is a low-cost nonintrusive technique with the ability to locate uncertainties (leak, pipe fitting, blockage) at a greater distance from the measurement point. In this research, Normalised Hilbert Huang Transform (NHHT) is used as the method to analyse the pressure transient signal. However, this method has difficulty in selecting the suitable intrinsic mode function (IMF) for the advance data analysing. As an alternative, Integrated Kurtosis-based Algorithm for z-filter Technique (Ikaz), which allows automatic selection of intrinsic mode function (IMF) been used to substitute the NHHT limitation in this study. The analysis is conducted on a 67.9-meter Medium High-Density PolyEthylene (MDPE) pipe installed with single artificial leak simulator at a water pressure in the range of 1-4 bar.


2017 ◽  
Author(s):  
M. Ibrahim ◽  
C. Pieprzica ◽  
E. Vosburgh ◽  
A. Dabral ◽  
O. Olayinka ◽  
...  

2022 ◽  
Author(s):  
Ahmed Elsayed Hegazy ◽  
Mohammed Rashdi

Abstract Pressure transient analysis (PTA) has been used as one of the important reservoir surveillance tools for tight condensate-rich gas fields in Sultanate of Oman. The main objectives of PTA in those fields were to define the dynamic permeability of such tight formations, to define actual total Skin factors for such heavily fractured wells, and to assess impairment due to condensate banking around wellbores. After long production, more objectives became also necessary like assessing impairment due to poor clean-up of fractures placed in depleted layers, assessing newly proposed Massive fracturing strategy, assessing well-design and fracture strategies of newly drilled Horizontal wells, targeting the un-depleted tight layers, and impairment due to halite scaling. Therefore, the main objective of this paper is to address all the above complications to improve well and reservoir modeling for better development planning. In order to realize most of the above objectives, about 21 PTA acquisitions have been done in one of the mature gas fields in Oman, developed by more than 200 fractured wells, and on production for 25 years. In this study, an extensive PTA revision was done to address main issues of this field. Most of the actual fracture dynamic parameters (i.e. frac half-length, frac width, frac conductivity, etc.) have been estimated and compared with designed parameters. In addition, overall wells fracturing responses have been defined, categorized into strong and weak frac performances, proposing suitable interpretation and modeling workflow for each case. In this study, more reasonable permeability values have been estimated for individual layers, improving the dynamic modeling significantly. In addition, it is found that late hook-up of fractured wells leads to very poor fractures clean out in pressure-depleted layers, causing the weak frac performance. In addition, the actual frac parameters (i.e. frac-half-length) found to be much lower than designed/expected before implementation. This helped to improve well and fracturing design and implementation for next vertical and horizontal wells, improving their performances. All the observed PTA responses (fracturing, condensate-banking, Halite-scaling, wells interference) have been matched and proved using sophisticated single and sector numerical simulation models, which have been incorporated into full-field models, causing significant improvements in field production forecasts and field development planning (FDP).


Sign in / Sign up

Export Citation Format

Share Document