scholarly journals Exploring the Effect of Dehydration on Water Migrating Property and Protein Changes of Large Yellow Croaker (Pseudosciaena crocea) during Frozen Storage

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 784
Author(s):  
Mingtang Tan ◽  
Jing Xie

This study aimed to explore the effect of dehydration on the water migrating property and protein changes of large yellow croaker during frozen storage. A freeze-dryer was used to accelerate experiments, which was isolated from oxygen and excluded the effects of protein oxidation. After dehydration time (3, 9, 18, and 30 h) for both fast- and slow-freezing samples, the results showed that the ice sublimation of samples containing small ice crystals was faster than that of samples containing large ice crystals in the early stages of dehydration, but in the latest stage, there was an opposite trend. The results indicated that dehydration reduced the water freedom degrees and water–protein interaction. At the same time, dehydration had a significant effect on protein secondary and tertiary structures. The significant increase in surface hydrophobicity and particle size indicated that dehydration exacerbated myofibrillar protein aggregation. The ΔH1 values (from 1.275 to 0.834 J/g for slow-freezing group and from 1.129 to 0.855 J/g for fast-freezing group) decreased gradually as the dehydration time extended, indicating the decrease in protein thermal stability. Additionally, significant protein degradation occurred when the water content of the sample decreased to a certain level. This study showed that ice crystal size had an important effect on the rate of ice sublimation, and the occurrence of dehydration during frozen storage accelerated the water loss and the decrease in protein stability.

2017 ◽  
Author(s):  
Guillaume Mioche ◽  
Olivier Jourdan ◽  
Julien Delanoë ◽  
Christophe Gourbeyre ◽  
Guy Febvre ◽  
...  

Abstract. This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPC). We compiled and analyzed cloud in situ measurements from 4 airborne campaigns (18 flights, 71 vertical profiles in MPC) over the Greenland Sea and the Svalbard region. Cloud phase discrimination and representative vertical profiles of number, size, mass and shapes of ice crystals and liquid droplets are assessed. The results show that the liquid phase dominates the upper part of the MPC with high concentration of small droplets (120 cm−3, 15&tinsp;μm), and averaged LWC around 0.2 g m−3. The ice phase is found everywhere within the MPC layers, but dominates the properties in the lower part of the cloud and below where ice crystals precipitate down to the surface. The analysis of the ice crystal morphology highlights that irregulars and rimed are the main particle habit followed by stellars and plates. We hypothesize that riming and condensational growth processes (including the Wegener-Bergeron-Findeisein mechanism) are the main growth mechanisms involved in MPC. The differences observed in the vertical profiles of MPC properties from one campaign to another highlight that large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations which lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling are also determined, such as IWC (and LWC) – extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature. Finally, 4 flights collocated with active remote sensing observations from CALIPSO and CloudSat satellites are specifically analyzed to evaluate the cloud detection and cloud thermodynamical phase DARDAR retrievals. This comparison is valuable to assess the sub-pixel variability of the satellite measurements as well as their shortcomings/performance near the ground.


2007 ◽  
Vol 7 (1) ◽  
pp. 1295-1325 ◽  
Author(s):  
T. J. Garrett ◽  
M. B. Kimball ◽  
G. G. Mace ◽  
D. G. Baumgardner

Abstract. In this study, characteristic optical sizes of ice crystals in synoptic cirrus are determined using airborne measurements of ice crystal size distributions, optical extinction and water content. The measurements are compared with coincident visual observations of ice cloud optical phenomena, in particular the 22° and 46° halos. In general, the scattering profiles derived from the in-situ cloud probe measurements are consistent with the observed halo characteristics. It is argued that this implies that the measured ice crystals were small, probably with characteristic optical radii between 10 and 20 μm. There is a current contention that in-situ measurements of high concentrations of small ice crystals reflect artifacts from the shattering of large ice crystals on instrument inlets. Significant shattering cannot be entirely excluded using this approximate technique, but it is not indicated. On the basis of the in-situ measurements, a parameterization is provided that relates the optical effective radius of ice crystals to the temperature in mid-latitude synoptic cirrus.


2011 ◽  
Vol 11 (12) ◽  
pp. 5853-5865 ◽  
Author(s):  
M. Kübbeler ◽  
M. Hildebrandt ◽  
J. Meyer ◽  
C. Schiller ◽  
Th. Hamburger ◽  
...  

Abstract. The frequency of occurrence of cirrus clouds and contrails, their life time, ice crystal size spectra and thus their radiative properties depend strongly on the ambient distribution of the relative humidity with respect to ice (RHice). Ice clouds do not form below a certain supersaturation and both cirrus and contrails need at least saturation conditions to persist over a longer period. Under subsaturated conditions, cirrus and contrails should dissipate. During the mid-latitude aircraft experiment CONCERT 2008 (CONtrail and Cirrus ExpeRimenT), RHice and ice crystals were measured in cirrus and contrails. Here, we present results from 2.3/1.7 h of observation in cirrus/contrails during 6 flights. Thin and subvisible cirrus with contrails embedded therein have been detected frequently in a subsaturated environment. Nevertheless, ice crystals up to radii of 50 μm and larger, but with low number densities were often observed inside the contrails as well as in the cirrus. Analysis of the meteorological situation indicates that the crystals in the contrails were entrained from the thin/subvisible cirrus clouds, which emerged in frontal systems with low updrafts. From model simulations of cirrus evaporation times it follows that such thin/subvisible cirrus can exist for time periods of a couple of hours and longer in a subsaturated environment and thus may represent a considerable part of the cirrus coverage.


2014 ◽  
Vol 71 (8) ◽  
pp. 2905-2926 ◽  
Author(s):  
B. Kärcher ◽  
A. Dörnbrack ◽  
I. Sölch

Abstract Small-scale dynamical variability affects atmospheric supersaturation and therefore the development of ice clouds via uptake of water vapor on ice crystals. This variability and its implications for ice growth are difficult to capture experimentally and theoretically. By interpreting supersaturation as a stochastic variable, the authors examine the average temporal behavior of, and the link between, supersaturation fluctuations and ice crystal size distributions in upper-tropospheric cirrus clouds. The authors classify cirrus types according to their ability to dampen supersaturation fluctuations owing to depositional growth of cloud ice and study how size distributions in them respond to supersaturation variability, investigating the possibility of the occurrence of ice-supersaturated states within cirrus. Typical time scales for growth and damping impacts on supersaturation are minutes and minutes to hours, respectively, and are highly variable among cirrus types and within single clouds. Transient deviations from saturated equilibrium states can occur depending on the ice crystal number concentration and size and on the strength of the small-scale dynamical forcing. Supersaturation preferentially occurs in cloud regions with few small ice crystals. The authors demonstrate that supersaturation fluctuations in very thin tropical tropopause cirrus create long-lived supersaturated states. Furthermore, they potentially generate few large ice crystals, broadening size distributions, and significantly enhance water mass fluxes due to sedimentation. Although not studied here, they may also allow new ice crystals to nucleate. Implications of these findings for those clouds to dehydrate air entering the lower stratosphere are discussed and future research needs are outlined.


2010 ◽  
Vol 10 (12) ◽  
pp. 31153-31186 ◽  
Author(s):  
M. Kübbeler ◽  
M. Hildebrandt ◽  
J. Meyer ◽  
C. Schiller ◽  
T. Hamburger ◽  
...  

Abstract. The frequency of occurrence of cirrus clouds and contrails, their life time, ice crystal size spectra and thus their radiative properties depend strongly on the ambient distribution of the relative humidity with respect to ice (RHice). Ice clouds do not form below a certain supersaturation and both cirrus and contrails need at least saturation conditions to persist over a longer period. Under subsaturated conditions, cirrus and contrails should dissipate. During the mid-latitude aircraft experiment CONCERT 2008 (CONtrail and Cirrus ExpeRimenT), RHice and ice crystals were measured in cirrus and contrails. Here, we present results from 2.3/1.7 h of observation in cirrus/contrails during 6 flights. Thin and subvisible cirrus with contrails embedded therein have been detected frequently in a subsaturated environment. Nevertheless, ice crystals up to radii of 50 μm and larger, but with low number densities were often observed inside the contrails as well as in the cirrus. Analysis of the meteorological situation indicates that the crystals in the contrails were entrained from the thin/subvisible cirrus clouds, which emerged in frontal systems with low updrafts. From model simulations of cirrus evaporation times it follows that such thin/subvisible cirrus can exist for time periods of a couple of hours and longer in a subsaturated environment and thus may represent a considerable part of the cirrus coverage.


2015 ◽  
Vol 15 (23) ◽  
pp. 34243-34281 ◽  
Author(s):  
A. E. Luebke ◽  
A. Afchine ◽  
A. Costa ◽  
J. Meyer ◽  
C. Rolf ◽  
...  

Abstract. The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. It has recently been proposed that there are two types of cirrus clouds – in situ and liquid origin. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are a higher frequency of high IWC (> 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm−3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 μm for in situ origin cirrus, with some of the largest crystals reaching 550 μm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 μm, and crystals that were up to 750 μm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.


2017 ◽  
Vol 17 (20) ◽  
pp. 12845-12869 ◽  
Author(s):  
Guillaume Mioche ◽  
Olivier Jourdan ◽  
Julien Delanoë ◽  
Christophe Gourbeyre ◽  
Guy Febvre ◽  
...  

Abstract. This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm−3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m−3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L−1 and 0.025 g m−3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener–Bergeron–Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) – extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature.


2016 ◽  
Vol 16 (9) ◽  
pp. 5793-5809 ◽  
Author(s):  
Anna E. Luebke ◽  
Armin Afchine ◽  
Anja Costa ◽  
Jens-Uwe Grooß ◽  
Jessica Meyer ◽  
...  

Abstract. The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. Recently, two types of cirrus clouds differing by formation mechanism and microphysical properties have been classified – in situ and liquid origin cirrus. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are higher frequencies of high IWC ( > 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm−3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 µm for in situ origin cirrus, with some of the largest crystals reaching 550 µm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 µm, and crystals that were up to 750 µm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.


2014 ◽  
Vol 31 (12) ◽  
pp. 2567-2590 ◽  
Author(s):  
Robert C. Jackson ◽  
Greg M. McFarquhar ◽  
Jeff Stith ◽  
Matthew Beals ◽  
Raymond A. Shaw ◽  
...  

Abstract Prior estimates of ice crystal size distributions derived from 2D cloud probes (2DCs) have been artificially amplified by small ice crystals generated from the shattering of large ice crystals on the probe tips. Although antishatter tips and algorithms exist, there is considerable uncertainty in their effectiveness. This paper examines differences in ice crystal size distributions from adjacent 2DCs with standard and antishatter tips, and processed with and without antishattering algorithms. The measurements were obtained from the National Research Council of Canada Convair-580 during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the National Center for Atmospheric Research C-130 during the 2011 Instrumentation Development and Education in Airborne Science (IDEAS-2011). The 2DC size distributions are compared with those from the Holographic Detector for Clouds (HOLODEC), which has antishatter tips and allows for identification of shattering through spatial statistics. The ratio of the number concentration N of particles with maximum dimensions 125–500 μm from the 2DC with standard tips to that from the 2DC with modified tips was correlated with median mass diameter and perimeter divided by area, but not with airspeed, attack, and attitude angles. Antishatter tips and algorithms reduced N by up to a factor of 10 for IDEAS-2011 and ISDAC, but neither alone removed all artifacts. For the period with coincident data, both N from the HOLODEC and 2DC with modified tips are around 5 × 10−3 L−1 μm−1, suggesting that antishatter tips and algorithms combined remove artifacts from the 2DC for the conditions sampled during IDEAS-2011.


Sign in / Sign up

Export Citation Format

Share Document