scholarly journals Well Posedness of New Optimization Problems with Variational Inequality Constraints

2021 ◽  
Vol 5 (3) ◽  
pp. 123
Author(s):  
Savin Treanţă

In this paper, we studied the well posedness for a new class of optimization problems with variational inequality constraints involving second-order partial derivatives. More precisely, by using the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and monotonicity for a multiple integral functional, and by introducing the set of approximating solutions for the considered class of constrained optimization problems, we established some characterization results on well posedness. Furthermore, to illustrate the theoretical developments included in this paper, we present some examples.

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2478
Author(s):  
Savin Treanţă

By considering the new forms of the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and monotonicity of the considered scalar multiple integral functional, in this paper we study the well-posedness of a new class of variational problems with variational inequality constraints. More specifically, by defining the set of approximating solutions for the class of variational problems under study, we establish several results on well-posedness.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Author(s):  
Savin Treanta ◽  
Shalini Jha

In this paper, by using the new concepts of monotonicity, pseudomonotonicity and hemicontinuity associated with the considered curvilinear integral functional, we investigate the well-posedness and well-posedness in generalized sense for a class of controlled variational inequality problems. More precisely, by introducing the approximating solution set of the considered class of controlled variational inequality problems, we formulate and prove some characterization results on well-posedness and well-posedness in generalized sense. Also, the theoretical developments presented in the paper are accompanied by illustrative examples.


Author(s):  
Priyanka Roy ◽  
Dr. Geetanjali Panda

Objective of this article is to study the conditions for the existence of efficient solution of interval optimization problem with inequality constraints. Here the active constraints are considered in inclusion form. The regularity condition for the existence of the Karush -Kuhn-Tucker point is derived. This condition depends on the interval-valued gradient function of active constraints. These are new concepts in the literature of interval optimization. gH -differentiability is used for the theoretical developments. gH -pseudo convexity for interval valued constrained optimization problems is introduced to study the sufficient conditions. Theoretical developments are verified through numerical examples.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Savin Treanţă

A new class of differential variational inequalities (DVIs), governed by a variational inequality and an evolution equation formulated in infinite-dimensional spaces, is investigated in this paper. More precisely, based on Browder’s result, optimal control theory, measurability of set-valued mappings and the theory of semigroups, we establish that the solution set of DVI is nonempty and compact. In addition, the theoretical developments are accompanied by an application to differential Nash games.


2020 ◽  
Vol 10 (6) ◽  
pp. 2075 ◽  
Author(s):  
Shih-Cheng Horng ◽  
Shieh-Shing Lin

The stochastic inequality constrained optimization problems (SICOPs) consider the problems of optimizing an objective function involving stochastic inequality constraints. The SICOPs belong to a category of NP-hard problems in terms of computational complexity. The ordinal optimization (OO) method offers an efficient framework for solving NP-hard problems. Even though the OO method is helpful to solve NP-hard problems, the stochastic inequality constraints will drastically reduce the efficiency and competitiveness. In this paper, a heuristic method coupling elephant herding optimization (EHO) with ordinal optimization (OO), abbreviated as EHOO, is presented to solve the SICOPs with large solution space. The EHOO approach has three parts, which are metamodel construction, diversification and intensification. First, the regularized minimal-energy tensor-product splines is adopted as a metamodel to approximately evaluate fitness of a solution. Next, an improved elephant herding optimization is developed to find N significant solutions from the entire solution space. Finally, an accelerated optimal computing budget allocation is utilized to select a superb solution from the N significant solutions. The EHOO approach is tested on a one-period multi-skill call center for minimizing the staffing cost, which is formulated as a SICOP. Simulation results obtained by the EHOO are compared with three optimization methods. Experimental results demonstrate that the EHOO approach obtains a superb solution of higher quality as well as a higher computational efficiency than three optimization methods.


Sign in / Sign up

Export Citation Format

Share Document