scholarly journals DNA Testing Reveals the Putative Identity of JB55, a 19th Century Vampire Buried in Griswold, Connecticut

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 636
Author(s):  
Jennifer Daniels-Higginbotham ◽  
Erin M. Gorden ◽  
Stephanie K. Farmer ◽  
Brian Spatola ◽  
Franklin Damann ◽  
...  

In 1990 in Griswold, Connecticut, archaeologists excavated a burial found in a “skull and crossbones” orientation. The lid of the 19th century coffin had brass tacks that spelled “JB55”, the initials of the person lying there and age at death. JB55 had evidence of chronic pulmonary infection, perhaps tuberculosis. It is possible that JB55 was deemed a vampire due to his disease, and therefore had to be “killed” by mutilating his corpse. In an attempt to reveal the identity of JB55, DNA testing was performed. Ancestry informative single nucleotide polymorphism (SNP) analysis using the Precision ID Ancestry Panel indicated European ancestry. A full Y-chromosomal short tandem repeat (Y-STR) profile was obtained, belonging to haplogroup R1b. When the Y-STR profile was searched in the publicly accessible FamilyTreeDNA R1b Project website, the two closest matches had the surname “Barber”. A search of historical records led to a death notice mentioning John Barber, whose son Nathan Barber was buried in Griswold in 1826. The description of Nathan Barber closely fits the burial of “NB13,” found near JB55. By applying modern forensic DNA tools to a historical mystery, the identity of JB55 as John Barber, the 19th century Connecticut vampire, has been revealed.

2017 ◽  
Author(s):  
Darrell O. Ricke

AbstractRapid analysis of DNA forensic samples can have a critical impact on time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA forensic analysis. This technology enables the expansion of forensic profiles from the current 20 short tandem repeat (STR) loci to tens of thousands of single nucleotide polymorphism (SNP) loci. A forensic search scales by the product of the number of loci and the number of profile comparisons. This paper introduces a method (FastID) to address the need for rapid scalable analysis of DNA forensic samples (patent pending)[1]. FastID can search a profile of 2,500 SNP loci against 20 million profiles in 5.08 seconds using a single computational thread on a laptop (Intel i7 4.0 GHz).


2021 ◽  
pp. 175342592110299
Author(s):  
Alexander Varzari ◽  
Igor V. Deyneko ◽  
Elena Tudor ◽  
Harald Grallert ◽  
Thomas Illig

Polymorphisms in genes that control immune function and regulation may influence susceptibility to pulmonary tuberculosis (TB). In this study, 14 polymorphisms in 12 key genes involved in the immune response ( VDR, MR1, TLR1, TLR2, TLR10, SLC11A1, IL1B, IL10, IFNG, TNF, IRAK1, and FOXP3) were tested for their association with pulmonary TB in 271 patients with TB and 251 community-matched controls from the Republic of Moldova. In addition, gene–gene interactions involved in TB susceptibility were analyzed for a total of 43 genetic loci. Single nucleotide polymorphism (SNP) analysis revealed a nominal association between TNF rs1800629 and pulmonary TB (Fisher exact test P = 0.01843). In the pairwise interaction analysis, the combination of the genotypes TLR6 rs5743810 GA and TLR10 rs11096957 GT was significantly associated with an increased genetic risk of pulmonary TB (OR = 2.48, 95% CI = 1.62–3.85; Fisher exact test P value = 1.5 × 10−5, significant after Bonferroni correction). In conclusion, the TLR6 rs5743810 and TLR10 rs11096957 two-locus interaction confers a significantly higher risk for pulmonary TB; due to its high frequency in the population, this SNP combination may serve as a novel biomarker for predicting TB susceptibility.


2014 ◽  
Vol 80 (7) ◽  
pp. 2125-2132 ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
Ruth Timme ◽  
Brian H. Raphael ◽  
Donald Zink ◽  
Shashi K. Sharma

ABSTRACTClostridium botulinumis a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+OrfX−) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA−OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producingC. botulinumstrains: two strains with the HA+OrfX−cluster (69A and 32A) and one strain with the HA−OrfX+cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly availableC. botulinumgroup I strains revealed five distinct lineages. Strains 69A and 32A clustered with theC. botulinumtype A1 Hall group, and strain CDC297 clustered with theC. botulinumtype Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination ofC. botulinumgroup I strains and demonstrates the utility of this analysis in quickly differentiatingC. botulinumstrains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.


2021 ◽  
Author(s):  
Kamar Afra ◽  
Michelle Hamilton ◽  
Bridget Algee-Hewitt

Genotype-phenotype studies increasingly link single nucleotide polymorphism (SNPs) to the dimensions of the face for presumed homogeneous populations. To appreciate the significance of these findings, it is essential to investigate how these results differ between the genetic and phenotypic profiles of individuals. In prior work, we investigated the connection between SNPs previously identified as informative of soft tissue expression and measurements of the craniofacial skeleton. Using matched genetic and skeletal information on 17 individuals who self-identified as White with presumed common continental ancestry (European), we obtained significant Spearman correlations for 11 SNPs. In the present study, we looked at self-identified ancestry to understand the intersectional background of the individual’s phenotype and genotype. We integrated our samples within a diverse dataset of 2,242 modern Americans and applied an unsupervised model-based clustering routine to 13 craniometrics. We generated a mean estimate of 69.65% (±SD = 18%) European ancestry for the White sample under an unsupervised cluster model. We estimated higher quantities of European ancestry, 88.5%–93%, for our subset of 17 individuals. These elevated estimates were of interest with respect to the distribution of population-informative SNPs; we found, for example, that one of our sampled self-identified White individuals displayed SNPs commonly associated with Latin American populations. These results underscore the complex interrelationship between environment and genetics, and the need for continued research into connections between population affinity, social identity, and morphogenetic expression.


2018 ◽  
Vol 43 (4) ◽  
pp. 309
Author(s):  
N. Hilmia ◽  
D. Rahmat ◽  
D. Dudi

Point mutation on exon 2 of leptin gene, which changes amino acid encoding from Arginine to Cysteine, may alters the physiological function of the leptin hormone. This study aimed to identify leptin gene polymorphism of Ongole Grade (OG) cattle based on Single Nucleotide Polymorphism (SNP). The DNA sample was taken from 48 head of OG cattle at Balai Pengembangan Perbibitan Ternak Sapi Potong(BPPT SP) Cijeungjing West Java, which was isolated from white blood cell using the high salt method. Amplification of DNA was done by Polymerase Chain Reaction (PCR), followed by direct sequencing to obtain nucleotide sequence. The SNP analysis was carried out from alignment of sequencing result using Bioedit and MEGA 5.2 program. The results indicated in exon 2 leptin gene of OG cattle there was one synonymous SNPs that did not changeamino acids Serine encoding on g.1025T >C/S17S, while two non synonymous SNPaltered amino acids encoding, those were g.1047C> T /R25C and g.1048G>A/R25H. Those mutations changed amino acids encoding from Arginine to Cysteine and Arginine to Histidine respectively.In OG cattle, the frequency of A allele (44.8%) was higher than C allele (33.3%) and T allele (21.9%). Six genotypes were also identified, i.e. AA (41.7%), CC (20.8%), CT (20.8%), CA(4.2%), TT (10.4%) and TA (2.1 %). Heterozigosity of OG cattle based on leptin gene was 0.65 that was a high category. The A allele was a specific allele on Indonesian local cattle.


Epidemiology ◽  
2009 ◽  
Vol 20 ◽  
pp. S171
Author(s):  
Jane McElroy ◽  
Elizabeth Bryda ◽  
Robert Schnabel ◽  
Stephanie McKay ◽  
Jeremy Taylor

2011 ◽  
Vol 55 (10) ◽  
pp. 4718-4727 ◽  
Author(s):  
Susu Duan ◽  
David A. Boltz ◽  
Jiang Li ◽  
Christine M. Oshansky ◽  
Henju Marjuki ◽  
...  

ABSTRACTNeuraminidase (NA) inhibitors are among the first line of defense against influenza virus infection. With the increased worldwide use of the drugs, antiviral susceptibility surveillance is increasingly important for effective clinical management and for public health epidemiology. Effective monitoring requires effective resistance detection methods. We have developed and validated a novel genotyping method for rapid detection of established NA inhibitor resistance markers in influenza viruses by single nucleotide polymorphism (SNP) analysis. The multi- or monoplex SNP analysis based on single nucleotide extension assays was developed to detect NA mutations H275Y and I223R/V in pandemic H1N1 viruses, H275Y in seasonal H1N1 viruses, E119V and R292K in seasonal H3N2 viruses, and H275Y and N295S in H5N1 viruses. The SNP analysis demonstrated high sensitivity for low-content NA amplicons (0.1 to 1 ng/μl) and showed 100% accordant results against a panel of defined clinical isolates. The monoplex assays for the H275Y NA mutation allowed precise and accurate quantification of the proportions of wild-type and mutant genotypes in virus mixtures (5% to 10% discrimination), with results comparable to those of pyrosequencing. The SNP analysis revealed the lower growth fitness of an H275Y mutant compared to the wild-type pandemic H1N1 virus by quantitatively genotyping progeny viruses grown in normal human bronchial epithelial cells. This novel method offers high-throughput screening capacity, relatively low costs, and the wide availability of the necessary equipment, and thus it could provide a much-needed approach for genotypic screening of NA inhibitor resistance in influenza viruses.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Anna Janowicz ◽  
Fabrizio De Massis ◽  
Massimo Ancora ◽  
Cesare Cammà ◽  
Claudio Patavino ◽  
...  

ABSTRACT The use of whole-genome sequencing (WGS) using next-generation sequencing (NGS) technology has become a widely accepted method for microbiology laboratories in the application of molecular typing for outbreak tracing and genomic epidemiology. Several studies demonstrated the usefulness of WGS data analysis through single-nucleotide polymorphism (SNP) calling from a reference sequence analysis for Brucella melitensis, whereas gene-by-gene comparison through core-genome multilocus sequence typing (cgMLST) has not been explored so far. The current study developed an allele-based cgMLST method and compared its performance to that of the genome-wide SNP approach and the traditional multilocus variable-number tandem repeat analysis (MLVA) on a defined sample collection. The data set was comprised of 37 epidemiologically linked animal cases of brucellosis as well as 71 isolates with unknown epidemiological status, composed of human and animal samples collected in Italy. The cgMLST scheme generated in this study contained 2,704 targets of the B. melitensis 16M reference genome. We established the potential criteria necessary for inclusion of an isolate into a brucellosis outbreak cluster to be ≤6 loci in the cgMLST and ≤7 in WGS SNP analysis. Higher phylogenetic distance resolution was achieved with cgMLST and SNP analysis than with MLVA, particularly for strains belonging to the same lineage, thereby allowing diverse and unrelated genotypes to be identified with greater confidence. The application of a cgMLST scheme to the characterization of B. melitensis strains provided insights into the epidemiology of this pathogen, and it is a candidate to be a benchmark tool for outbreak investigations in human and animal brucellosis.


2021 ◽  
Author(s):  
Murat Karamese ◽  
Didem Ozgur ◽  
Emin E Tutuncu

Aims: We present the sequence and single-nucleotide polymorphism (SNP) analysis for 47 complete genomes for SARS-CoV-2 isolates on Turkish patients. Methods: The Illumina MiSeq platform was used for sequencing the libraries. The SNPs were detected by using Genome Analysis Toolkit – HaplotypeCaller v.3.8.0 and were inspected on GenomeBrowse v2.1.2. Results: All viral genome sequences of our isolates were located in lineage B under the different clusters, such as B.1 (n = 3), B.1.1 (n = 28) and B.1.9 (n = 16). According to the Global Initiative on Sharing All Influenza Data nomenclature, all of our complete genomes were placed in G, GR and GH clades. In our study, 549 total and 53 unique SNPs were detected. Conclusion: The results indicate that the SARS-CoV-2 sequences of our isolates have great similarity with all Turkish and European sequences.


Sign in / Sign up

Export Citation Format

Share Document