scholarly journals Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 355
Author(s):  
Maria-Eleni Gregoriou ◽  
Martin Reczko ◽  
Evdoxia G. Kakani ◽  
Konstantina T. Tsoumani ◽  
Kostas D. Mathiopoulos

In most diploid organisms, mating is a prerequisite for reproduction and, thus, critical to the maintenance of their population and the perpetuation of the species. Besides the importance of understanding the fundamentals of reproduction, targeting the reproductive success of a pest insect is also a promising method for its control, as a possible manipulation of the reproductive system could affect its destructive activity. Here, we used an integrated approach for the elucidation of the reproductive system and mating procedures of the olive fruit fly, Bactrocera oleae. Initially, we performed a RNAseq analysis in reproductive tissues of virgin and mated insects. A comparison of the transcriptomes resulted in the identification of genes that are differentially expressed after mating. Functional annotation of the genes showed an alteration in the metabolic, catalytic, and cellular processes after mating. Moreover, a functional analysis through RNAi silencing of two differentially expressed genes, yellow-g and troponin C, resulted in a significantly reduced oviposition rate. This study provided a foundation for future investigations into the olive fruit fly’s reproductive biology to the development of new exploitable tools for its control.

Author(s):  
Kiki Varikou ◽  
Antonis Nikolakakis ◽  
Dimitris Bitsakis ◽  
Zacharias Skarakis ◽  
Nikos Garantonakis ◽  
...  

2013 ◽  
Vol 28 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Tatjana Perovic ◽  
Snjezana Hrncic

Olive fruit fly is the most harmful pest of olive fruits and important for oil production. Damage involves yield reduction as a consequence of premature fruit drop, but also a reduced quality of olive oil and olive products. There is little available data regarding the biology of Bactrocera oleae in Montenegro. Knowledge of the pest life cycle and development would improve optimization of insecticide application timing and protection of fruits, and reduce adverse effects on the environment. Investigation was conducted on the Zutica variety in an olive grove located in Bar during a three-year period. Population dynamics of the pre-imaginal stages and level of fruit infestation were monitored from mid-July until the end of October. The results of this three-year investigation showed that the beginning of infestation was always at the end of July. It was also found that, depending on environmental conditions, the level of infestation was low until the end of August. In September and October it multiplied, and reached maximum by the end of October. Regarding infestation structure, eggs and first instar larvae were the dominant developmental stages of the pest until the middle of September. From mid-September until mid-October all developmental stages (eggs, larvae, pupae) were equally present in infested fruits. Pupae, cocoons and abandoned galleries prevailed until the harvest.


EDIS ◽  
1969 ◽  
Vol 2002 (8) ◽  
Author(s):  
Howard V. Weems ◽  
James L. Nation

This document is EENY-113 (originally published as DPI Entomology Circular No. 44), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: September 1999. Revised: June 2003.


Author(s):  
Pierre Pommois ◽  
Pietro Brunetti ◽  
Vincenzo Bruno ◽  
Antonio Mazzei ◽  
Valerio Baldacchini ◽  
...  

Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Anna Zambetaki ◽  
Antigone Zacharopoulou ◽  
Zacharias G. Scouras ◽  
Penelope Mavragani-Tsipidou

Sign in / Sign up

Export Citation Format

Share Document