scholarly journals A Simulated Shift Work Schedule Does Not Increase DNA Double-Strand Break Repair by NHEJ in the Drosophila Rr3 System

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 150
Author(s):  
Lydia Bergerson ◽  
Caleb Fitzmaurice ◽  
Tyler Knudtson ◽  
Halle McCormick ◽  
Alder M. Yu

Long-term shift work is widely believed to increase the risk of certain cancers, but conflicting findings between studies render this association unclear. Evidence of interplay between the circadian clock, cell cycle regulation, and DNA damage detection machinery suggests the possibility that circadian rhythm disruption consequent to shift work could alter the DNA double-strand break (DSB) repair pathway usage to favor mutagenic non-homologous end-joining (NHEJ) repair. To test this hypothesis, we compared relative usage of NHEJ and single-strand annealing (SSA) repair of a complementary ended chromosomal double-stranded break using the Repair Reporter 3 (Rr3) system in Drosophila between flies reared on 12:12 and 8:8 (simulated shift work) light:dark schedules. Actimetric analysis showed that the 8:8 light:dark schedule effectively disrupted the rhythms in locomotor output. Inaccurate NHEJ repair was not a frequent outcome in this system overall, and no significant difference was seen in the usage of NHEJ or SSA repair between the control and simulated shift work schedules. We conclude that this circadian disruption regimen does not alter the usage of mutagenic NHEJ DSB repair in the Drosophila male pre-meiotic germline, in the context of the Rr3 system.

2020 ◽  
Vol 48 (17) ◽  
pp. e100-e100 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

Abstract Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1–10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


2005 ◽  
Vol 171 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Hong Yan ◽  
Jill McCane ◽  
Thomas Toczylowski ◽  
Chinyi Chen

Werner syndrome is associated with premature aging and increased risk of cancer. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which seems to participate in DNA replication, double-strand break (DSB) repair, and telomere maintenance; however, its exact function remains elusive. Using Xenopus egg extracts as the model system, we found that Xenopus WRN (xWRN) is recruited to discrete foci upon induction of DSBs. Depletion of xWRN has no significant effect on nonhomologous end-joining of DSB ends, but it causes a significant reduction in the homology-dependent single-strand annealing DSB repair pathway. These results provide the first direct biochemical evidence that links WRN to a specific DSB repair pathway. The assay for single-strand annealing that was developed in this study also provides a powerful biochemical system for mechanistic analysis of homology-dependent DSB repair.


2018 ◽  
Vol 71 (4) ◽  
pp. 621-628.e4 ◽  
Author(s):  
Anaid Benitez ◽  
Wenjun Liu ◽  
Anna Palovcak ◽  
Guanying Wang ◽  
Jaewon Moon ◽  
...  

2011 ◽  
Vol 192 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Hong Yan ◽  
Thomas Toczylowski ◽  
Jill McCane ◽  
Chinyi Chen ◽  
Shuren Liao

Replication protein A (RPA), the eukaryotic single-strand deoxyribonucleic acid (DNA [ss-DNA])–binding protein, is involved in DNA replication, nucleotide damage repair, mismatch repair, and DNA damage checkpoint response, but its function in DNA double-strand break (DSB) repair is poorly understood. We investigated the function of RPA in homology-dependent DSB repair using Xenopus laevis nucleoplasmic extracts as a model system. We found that RPA is required for single-strand annealing, one of the homology-dependent DSB repair pathways. Furthermore, RPA promotes the generation of 3′ single-strand tails (ss-tails) by stimulating both the Xenopus Werner syndrome protein (xWRN)–mediated unwinding of DNA ends and the subsequent Xenopus DNA2 (xDNA2)–mediated degradation of the 5′ ss-tail. Purified xWRN, xDNA2, and RPA are sufficient to carry out the 5′-strand resection of DNA that carries a 3′ ss-tail. These results provide strong biochemical evidence to link RPA to a specific DSB repair pathway and reveal a novel function of RPA in the generation of 3′ ss-DNA for homology-dependent DSB repair.


2020 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

ABSTRACTTracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1-10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Sign in / Sign up

Export Citation Format

Share Document