Threshold Effects of Relative Sea-Level Change in Intertidal Ecosystems: Empirical Evidence from Earthquake-Induced Uplift on a Rocky Coast

GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 302-320
Author(s):  
Shane Orchard ◽  
Hallie S. Fischman ◽  
Shawn Gerrity ◽  
Tommaso Alestra ◽  
Robyn Dunmore ◽  
...  

Widespread mortality of intertidal biota was observed following the 7.8 Mw Kaikōura earthquake in November 2016. To understand drivers of change and recovery in nearshore ecosystems, we quantified the variation in relative sea-level changes caused by tectonic uplift and evaluated their relationships with ecological impacts with a view to establishing the minimum threshold and overall extent of the major effects on rocky shores. Vertical displacement of contiguous 50 m shoreline sections was assessed using comparable LiDAR data to address initial and potential ongoing change across a 100 km study area. Co-seismic uplift accounted for the majority of relative sea-level change at most locations. Only small changes were detected beyond the initial earthquake event, but they included the weathering of reef platforms and accumulation of mobile gravels that continue to shape the coast. Intertidal vegetation losses were evident in equivalent intertidal zones at all uplifted sites despite considerable variation in the vertical displacement they experienced. Nine of ten uplifted sites suffered severe (>80%) loss in habitat-forming algae and included the lowest uplift values (0.6 m). These results show a functional threshold of c.1/4 of the tidal range above which major impacts were sustained. Evidently, compensatory recovery has not occurred—but more notably, previously subtidal algae that were uplifted into the low intertidal zone where they ought to persist (but did not) suggests additional post-disturbance adversities that have contributed to the overall effect. Continuing research will investigate differences in recovery trajectories across the affected area to identify factors and processes that will lead to the regeneration of ecosystems and resources.

2013 ◽  
Vol 28 (4) ◽  
pp. 403-411 ◽  
Author(s):  
BENJAMIN P. HORTON ◽  
SIMON E. ENGELHART ◽  
DAVID F. HILL ◽  
ANDREW C. KEMP ◽  
DARIA NIKITINA ◽  
...  

2018 ◽  
Vol 31 (13) ◽  
pp. 5263-5271 ◽  
Author(s):  
Megan Jeramaz Lickley ◽  
Carling C. Hay ◽  
Mark E. Tamisiea ◽  
Jerry X. Mitrovica

Estimates of regional and global average sea level change remain a focus of climate change research. One complication in obtaining coherent estimates is that geodetic datasets measure different aspects of the sea level field. Satellite altimetry constrains changes in the sea surface height (SSH; or absolute sea level), whereas tide gauge data provide a measure of changes in SSH relative to the crust (i.e., relative sea level). The latter is a direct measure of changes in ocean volume (and the combined impacts of ice sheet melt and steric effects), but the former is not since it does not account for crustal deformation. Nevertheless, the literature commonly conflates the two estimates by directly comparing them. We demonstrate that using satellite altimetry records to estimate global ocean volume changes can lead to biases that can exceed 15%. The level of bias will depend on the relative contributions to sea level changes from the Antarctic and Greenland Ice Sheets. The bias is also more sensitive to the detailed geometry of mass flux from the Antarctic Ice Sheet than the Greenland Ice Sheet due to rotational effects on sea level. Finally, in a regional sense, altimetry estimates should not be compared to relative sea level changes because radial crustal motions driven by polar ice mass flux are nonnegligible globally.


1992 ◽  
Vol 11 (2) ◽  
pp. 112-112 ◽  
Author(s):  
M. D. Simmons ◽  
C. L. Williams

Abstract. Following the May 1992 meeting in Dijon, which initiated an international project on the “Sequence Stratigraphy of European Basins”, it seems an appropriate time to consider the contribution micropalaeontology can make to the science of sequence stratigraphy. In this short note, we assume that readers are familiar with sequence stratigraphic terminology; if not, see Van Wagoner et al. (1988).WHAT ARE THE CHALLENGES FACING SEQUENCE STRATIGRAPHY?Demonstrating global eustatic sea-level change. We accept that the basic sequence stratigraphy model put forward by Peter Vail and his colleagues (see Van Wagoner et al., 1988 for a summary) is a powerful tool for describing many sedimentary successions, and that the associated eustatic sea-level curve (Haq et al., 1987) has some validity. Our own observations on numerous sedimentary sequences around the world suggest that local and global eustatic events exist, and that relative sea-level curves can be constructed, but it should be remembered that the timing and magnitude of many global eustatic events are still to be established. As most workers in the field will be aware, much of the evidence to support the Haq et al. curve has not been published. The Sequence Stratigraphy of European Basins Project will go some way to rectify this, but it should be borne in mind that there can be an unfortunate tendency to use the Haq et al. curve for dating in its own right - i.e. fitting relative sea-level changes seen in a succession to the curve. If this is done, then the global . . .


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


2011 ◽  
Vol 26 (7) ◽  
pp. 768-768
Author(s):  
M. J. Roberts ◽  
J. D. Scourse ◽  
J. D. Bennell ◽  
D. G. Huws ◽  
C. F. Jago ◽  
...  

2008 ◽  
Vol 23 (5) ◽  
pp. 415-433 ◽  
Author(s):  
Anthony C. Massey ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Glenn A. Milne ◽  
W. Richard Peltier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document