scholarly journals Reappraisal of the 1863 Huércal-Overa Earthquake (Betic Cordillera, SE Spain) by the Analysis of ESI-07 Environmental Effects and Building Oriented Damage

Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 303
Author(s):  
Pablo G. Silva ◽  
Javier Elez ◽  
Jorge L. Giner-Robles ◽  
Raúl Pérez-López ◽  
Elvira Roquero ◽  
...  

This work reviews the 1863 Huércal-Overa earthquake (VI-VII EMS) based on the environmental seismic intensity scale (ESI-07) and oriented archaeoseismological building damage. The performed analysis identifies 23 environmental effects (EEEs) and 11 archaeoseismological effects (EAEs), completing a total of 34 intensity data-points within the intensity zone ≥ VI EMS. The new ESI intensity data quintuplicate the previous intensity data-points ≥ VI EMS (five localities) for this event. Sixteen of the identified EEEs indicate the occurrence of intensity VII-VIII within the Almanzora valley, south of Huércal-Overa, over an area of ca. 12–15 km2. Anomalies in water bodies, slope movements, hydrogeological anomalies, ground cracking, and other effects (gas emissions, tree shaking) are the more diagnostic EEEs—with one of them indicating a local maximum intensity of VIII-IX ESI-07 (Alboraija lake). Environmental earthquake damage of intensity ≥ VI covers an area of c. 100 km2, compatible with a VIII ESI intensity event. The spatial distribution of EEEs and EAEs indicates that the zone of Almanzora River Gorge, which was depopulated during the earthquake epoch, was the epicentral area, and compatible with seismotectonic data from active shallow blind thrusting beneath the Almagro Range. The use of ESI data in nearly unpopulated areas help to fill gaps between damaged localities (EMS data) multiplying intensity data-points, providing a better definition of the intensity zones and offering a geological basis to look for suspect seismic sources.

2015 ◽  
Vol 58 (3) ◽  
Author(s):  
Josep Batlló ◽  
José Manuel Martínez-Solares ◽  
Ramon Macià ◽  
Daniel Stich ◽  
José Morales ◽  
...  

<p>On 10th September 1919 several slightly damaging earthquakes struck the towns of Torremendo, Jacarilla (near Alicante, SE-Spain) and others nearby. Available magnitude estimations for the largest two events of the series are M = 5 approx. They were earthquakes of moderate size and they occurred in a region where similar magnitude earthquakes, thoroughly studied, occurred recently (1999 Mula; 2002 Bullas; 2005 La Paca; 2011 Lorca). This makes these events of interest for a better definition of the regional seismicity. We study their sources from the analysis of the available contemporary seismograms and related documents. A total of 23 seismograms from 9 seismic stations have been collected and digitized. These seismograms contain records for the two main events and several aftershocks of the earthquake series. Finally 44 files, corresponding to 44 recorded single component records from the different events have been processed. The events have been relocated and their magnitudes recalculated. Also, original macroseismic information for these events was recovered. A macroseismic evaluation of the series has been performed. Intensity data points have been recalculated and macroseismic location and magnitude obtained. We conclude that these are the largest earthquakes occurred in the region since the beginning of instrumental recording, with Mw = 5.5 for the largest shock, and that the available data could be compatible with a thrust mechanism related to blind faults in the Bajo Segura region.</p>


2013 ◽  
Vol 56 (1) ◽  
Author(s):  
Aurelian Pantea ◽  
Angela Petruta Constantin

<p>In this paper, the macroseismic effects of the subcrustal earthquake in Vrancea (Romania) that occurred on March 4, 1977, have been re-evaluated. This was the second strongest seismic event that occurred in this area during the twentieth century, following the event that happened on November 10, 1940. It is thus of importance for our understanding of the seismicity of the Vrancea zone. The earthquake was felt over a large area, which included the territories of the neighboring states, and it produced major damage. Due to its effects, macroseismic studies were developed by Romanian researchers soon after its occurrence, with foreign scientists also involved, such as Medvedev, the founder of the Medvedev-Sponheuer-Karnik (MSK) seismic intensity scale. The original macroseismic questionnaires were re-examined, to take into account the recommendations for intensity assessments according to the MSK-64 macroseismic scale used in Romania. After the re-evaluation of the macroseismic field of this earthquake, the intensity dataset was obtained for 1,620 sites in Romanian territory. The re-evaluation was necessary as it has confirmed that the previous macroseismic map was underestimated. On this new map, only the intensity data points are plotted, without tracing the isoseismals.</p>


Author(s):  
V. Mapuranga ◽  
A. Kijko ◽  
I. Saunders ◽  
A. Singh ◽  
M. Singh ◽  
...  

Abstract On the 6th of February 2016 at 11:00 hours local time (0900 UTC), KwaZulu-Natal was struck by an earthquake of local magnitude ML=3.8. The epicentre of the earthquake was located offshore in the Durban Basin. The earthquake shaking was widely felt within the province as well as in East London in the Eastern Cape province and was reported by various national media outlets. Minor structural damage was reported. A macroseismic survey using questionnaires was conducted by the Council for Geoscience (CGS) in collaboration with the University of KwaZulu-Natal (UKZN) which yielded 41 intensity data points. Additional intensity data points were obtained from the United States Geological Survey (USGS) Did You Feel It? programme. An attempt was made to define a local intensity attenuation model. Generally, the earthquake was more strongly felt in low-cost housing neighbourhoods than in more affluent suburbs.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 471
Author(s):  
Sambit Prasanajit Naik ◽  
Ohsang Gwon ◽  
Sabina Porfido ◽  
Kiwoong Park ◽  
Kwangmin Jin ◽  
...  

The earthquake environmental effects (EEEs) around the epicentral area of the Pohang earthquake (Mw-5.4) that occurred on 15 November 2017 have been collected and classified using the Environmental Seismic Intensity Scale (ESI-07 scale) proposed by the International Union for Quaternary Research (INQUA) focus group. The shallow-focus 15 November Pohang earthquake did not produce any surface rupture, but caused extensive secondary environmental effects and damage to life-line structures. This earthquake was one of the most damaging earthquakes during the instrumental seismic era of the Korean Peninsula. The EEEs included extensive liquefaction, ground cracks, ground settlement, localized rockfall, and variation of the water table. The main objective of this paper was to carry forward a comparative assessment of the Pohang earthquake’s intensity based on traditional macroseismic scales and the ESI-07 scale. With that objective, this study will also make a substantial contribution to any future revision of the ESI-07 scale, which mostly comprises case studies from Europe and South America. The comparison of the ESI-07 scale with traditional intensity scales similar to the intensity scale used by the Korean Meteorological Administration for the epicentral areas showed 1–2-degree differences in intensity. Moreover, the ESI scale provided a clearer picture of the intensity around the epicentral area, which is mostly agricultural land with a lack of urban units or buildings. This study urges the integration of the traditional and ESI-07 scale for such small magnitude earthquakes in the Korean Peninsula as well as around the world in future. This will predict seismic intensity more precisely and hence provide a more-effective seismic hazard estimation, particularly in areas of low seismic activity. The present study will also provide a useful and reliable tool for the seismic hazard assessment of similar earthquakes around the study area and land-use planning at a local scale considering the secondary effects.


2014 ◽  
Vol 199 (2) ◽  
pp. 1278-1285 ◽  
Author(s):  
Boris Le Goff ◽  
José Fernando Borges ◽  
Mourad Bezzeghoud

2016 ◽  
Vol 20 (4) ◽  
Author(s):  
RASHID BURTIEV

<p>Fitting an ellipse to the set of intensity data points of earthquakes occurred on 11.10.1940, 07.04.1977, 31.08.1986, 30.05.1990 and 31.05.1990 is performed. Test criteria indicate that the ellipse smoothes the observed line of macroseismic field. For all earthquakes, focal axes of 5, 6 and 7 EMS-98 intensity zones are directed along the y-axis. For other zones are oriented along the parallels. This fact is one more acknowledgement of the anisotropy of a geophysical medium. Approximation of the set of points with an ellipse is performed using the method proposed by Fitzgibbon. </p>


2018 ◽  
Vol 22 (4) ◽  
pp. 927-941
Author(s):  
Lara Tiberi ◽  
Giovanni Costa ◽  
Petra Jamšek Rupnik ◽  
Ina Cecić ◽  
Peter Suhadolc

Author(s):  
Gheorghe Marmureanu ◽  
Radu Vacareanu ◽  
Carmen Ortanza Cioflan ◽  
Constantin Ionescu ◽  
Dragos Toma-Danila

2012 ◽  
Vol 12 (5) ◽  
pp. 1659-1670 ◽  
Author(s):  
A. Gosar

Abstract. The 12 April 1998 Mw = 5.6 Krn Mountains earthquake with a maximum intensity of VII–VIII on the EMS-98 scale caused extensive environmental effects in the Julian Alps. The application of intensity scales based mainly on damage to buildings was limited in the epicentral area, because it is a high mountain area and thus very sparsely populated. On the other hand, the effects on the natural environment were prominent and widespread. These facts and the introduction of a new Environmental Seismic Intensity scale (ESI 2007) motivated a research aimed to evaluate the applicability of ESI 2007 to this event. All environmental effects were described, classified and evaluated by a field survey, analysis of aerial images and analysis of macroseismic questionnaires. These effects include rockfalls, landslides, secondary ground cracks and hydrogeological effects. It was realized that only rockfalls (78 were registered) are widespread enough to be used for intensity assessment, together with the total size of affected area, which is around 180 km2. Rockfalls were classified into five categories according to their volume. The volumes of the two largest rockfalls were quantitatively assessed by comparison of Digital Elevation Models to be 15 × 106 m3 and 3 × 106 m3. Distribution of very large, large and medium size rockfalls has clearly defined an elliptical zone, elongated parallel to the strike of the seismogenic fault, for which the intensity VII–VIII was assessed. This isoseismal line was compared to the tentative EMS-98 isoseism derived from damage-related macroseismic data. The VII–VIII EMS-98 isoseism was defined by four points alone, but a similar elongated shape was obtained. This isoseism is larger than the corresponding ESI 2007 isoseism, but its size is strongly controlled by a single intensity point lying quite far from others, at the location where local amplification is likely. The ESI 2007 scale has proved to be an effective tool for intensity assessment in sparsely populated mountain regions not only for very strong, but for moderate earthquakes as well. This study has shown that the quantitative definition of rockfall size and frequency, which is diagnostic for each intensity, is not very precise in ESI 2007, but this is understandable since the rockfall size is related not only to the level of shaking, but also depends highly on the vulnerability of rocky slopes.


Sign in / Sign up

Export Citation Format

Share Document