scholarly journals Evaluation of Satellite Rainfall Estimates for Meteorological Drought Analysis over the Upper Blue Nile Basin, Ethiopia

Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 352
Author(s):  
Mintesinot Taye ◽  
Dejene Sahlu ◽  
Benjamin F. Zaitchik ◽  
Mulugeta Neka

The objective of this study was to evaluate the performance of satellite rainfall estimates (Climate Hazards Group Infrared Precipitation with Stations version 2 (CHIRPSv2) and Multi-Source Weighted-Ensemble Precipitation version 2 (MSWEPv2) from 1981 to 2018 for monthly meteorological drought analysis over the Upper Blue Nile (UBN) basin. The reference for the performance evaluation was rainfall measured in situ selected with reference to the elevation zones of the basin: Highland, midland, and lowland. Both the measured and estimated rainfall datasets were aggregated by month at a spatial resolution of 10 km × 10 km with a temporal coverage of 38 years from 1981 to 2018 and evaluated with respect to raw precipitation statistics and the standardized precipitation index (SPI). The values of SPI were validated with reference to documented meteorological drought records of the country. The mean bias, correlation coefficient, probability of bias (PBias, %), mean error (ME, mm), and root mean square error (RMSE, mm) values across the elevation zones for CHIRPSv2 were found to be 1.07, 0.91, 6.75, 7.74, and 122.34, respectively. The corresponding values were 1.19, 0.87, 18.56, 19.54, and 130.26 for MSWEPv2. Based on this result, CHIRPSv2 was employed to analyze the magnitude of drought in the different elevation zones of the UBN. The magnitude (SPI) of monthly meteorological drought over the entire UBN basin from 1981 to 2018 ranged from 0 to −3.74. The strongest negative SPI value (−3.74) was observed in August 1984 in midland areas. The highest magnitude of drought was −3.0 in July 2015 over the highland and −3.03 in June 2015 over the lowland during 2014–2017. The observed drought was characterized by extreme, severe, and moderate levels. The mean frequency of severe/extreme meteorological drought in the 38-year period over the highland, midland, and lowland parts of the UBN ranged from 7% to 11%. The average of severe/extreme drought events in each of the elevation zones of the basin was 9%, that is, drought occurred almost every 10 years for all elevation zones of the basin. Over the 38-year period, severe/extreme drought occurred at the onset and/or offset time of rainy season over all elevation zones of the basin. The UBN is characterized as a drought-prone basin. However, the frequency and magnitude of drought could neither be described as a decreasing nor as an increasing linear trend. Thus, the farming practices in the basin need to be enhanced with an improved early warning system and drought-resistant seed technologies.

2021 ◽  
Author(s):  
Biniyam Yisehak ◽  
Henok Shiferaw ◽  
Atkilt Girma ◽  
Zenebe Girmay ◽  
Rahwa Kidane

Abstract Meteorological drought is a climate-related natural disaster. It indicates a shortage of precipitation over a long period, usually for a season or a year. This study was initiated to analyze meteorological drought using copula theory. Long-year (1982–2020) rainfall and soil moisture data were used to analyze standardized precipitation index (SPI) and standardized soil moisture index (SSI), respectively. The best-fit copula family was selected to construct the joint probability distribution (JPD) of SPI and SSI. Multivariate standardized drought index (MSDI) at 3-, 6-, and 12-month timescales were analyzed using the MSDI toolbox. The non-parametric Mann-Kendall (M-K) statistical test was used for trend detection. The result shows the newly developed MSDI captured all extreme drought events with the highest severity (-3.21) that occurred during the observation period compared to SPI and SSI. MSDI shows the famine caused by the drought of 1984 and 1985 remains well known to the world, with the drought duration and severity of 10 months and 18.7 years, respectively and its joint return period was 33.0 years. The result of the M-K and Sen’s Slope estimator statistical tests shows a positive trend for all drought timescales in the basin. The extreme drought captured by the MSDI most frequently occurred in the basin. This implicated that meteorological drought analysis using multiple indices is better than a single index. The results of this study will help devise drought adaptation and mitigation strategies in the basin and beyond.


2019 ◽  
Vol 20 (8) ◽  
pp. 1721-1736 ◽  
Author(s):  
Aihui Wang ◽  
Xueli Shi

Abstract Based on the gravimetric-technique-measured soil relative wetness and the observed soil characteristic parameters from 1992 to 2013 in China, this study derives a user-convenient monthly volumetric soil moisture (SM) dataset from 732 stations for five soil layers (10, 20, 50, 70, and 100 cm). The temporal–spatial variations in SM and its relationship with precipitation (Pr) in different subregions are then explored. The magnitude of SM is relatively large in south China and is low in northwest China, and it generally increases with soil depth in each region. The maximum SM appears in spring and/or autumn and the minimum in summer, and the SM seasonality does not vary as distinctly as that of Pr. For the top three soil layers (10-, 20-, and 50-cm levels), the linear trend analysis indicates an overall increasing SM tendency, and the mean trends (averaged across stations with trends passing a 95% significance level test) are 9.35 × 10−7, 7.37 × 10−3, and 2.45 × 10−3 cm3 cm−3 yr−1, respectively. SM memory depends on the soil depth and regions, and it has longer retention time in the deeper layers. Furthermore, the correlation between SM and antecedent Pr varies with soil depth and lag time. The antecedent Pr anomaly (1 or 2 months in advance) can be used to some extent as a surrogate SM anomaly in most regions except for in arid regions. This result is further demonstrated by the relationships between the SM anomaly and the standardized precipitation index. The current SM dataset can be used in various applications, such as validating satellite-retrieved products and model outputs.


2019 ◽  
Vol 11 (1-2) ◽  
pp. 199-216
Author(s):  
R Afrin ◽  
F Hossain ◽  
SA Mamun

Drought is an extended period when a region notes a deficiency in its water supply. The Standardized Precipitation Index (SPI) method was used in this study to analyze drought. Northern region of Bangladesh was the area of study. Monthly rainfall data of northern region of Bangladesh was obtained from the Meteorological Department of Bangladesh. Obtained rainfall data was from 1991 to 2011 and values from 2012 to 2026 were generated using Markov model. Then SPI values from 1991 to 2026 were calculated by using SPI formula for analyzing drought. Analysis with SPI method showed that droughts in northern region of Bangladesh varied from moderately dry to severely dry conditions and it may vary from moderately dry to severely dry conditions normally in future but in some cases extreme drought may also take place. From the study, it is observed that the northern region of Bangladesh has already experienced severe drought in 1991, 1992, 1994, 1995, 1997, 1998, 2000, 2003, 2005, 2007, 2009 and 2010. The region may experience severe drought in 2012, 2015, 2016, 2018, 2019, 2021, 2022, 2023, 2024, 2025 and 2026 and extreme drought in 2012, 2014, 2016, 2023 and 2024. J. Environ. Sci. & Natural Resources, 11(1-2): 199-216 2018


2014 ◽  
Vol 15 (6) ◽  
pp. 2347-2369 ◽  
Author(s):  
Matthew P. Young ◽  
Charles J. R. Williams ◽  
J. Christine Chiu ◽  
Ross I. Maidment ◽  
Shu-Hua Chen

Abstract Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demonstrates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all elevations. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave-based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding regional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.


2014 ◽  
Vol 50 (11) ◽  
pp. 8775-8790 ◽  
Author(s):  
Mekonnen Gebremichael ◽  
Menberu M. Bitew ◽  
Feyera A. Hirpa ◽  
Gebrehiwot N. Tesfay

2019 ◽  
Vol 43 (1) ◽  
pp. 64-75
Author(s):  
Abebe Kebede ◽  
Jaya Prakash Raju ◽  
Diriba Korecha ◽  
Samuel Takele ◽  
Melessew Nigussie

AbstractDrought is an extreme event that causes great economic and environmental damage. The main objective of this study is to evaluate sensitivity, characterization and propagation of drought in the Upper Blue Nile. Drought indices: standardized precipitation index (SPI) and the recently developed standardized reconnaissance drought index (RDIst) are applied for five weather stations from 1980 to 2015 to evaluate RDIst applicability in the Upper Blue Nile. From our analysis both SPI and RDIst applied for 3-, 6-, 12 month of time scales follow the same trend, but in some time steps the RDIst varies with smaller amplitude than SPI. The severity and longer duration of drought compared with others periods of meteorological drought is found in the years 1984, 2002, 2009, 2015 including five weather stations and entire Upper Blue Nile. For drought relationships the correlation analysis is made across the time scales to evaluate the relationship between meteorological drought (SPI), soil moisture drought (SMI), and hydrological drought (SRI). We found that the correlation between three indices (SPI, SMI and SRI) at different time scales the 24-month time scale is dominant and are given by 0.82, 0.63 and 0.56.


Sign in / Sign up

Export Citation Format

Share Document