scholarly journals Microbial-Facilitated Calcium Carbonate Precipitation as a Shallow Stabilization Alternative for Expansive Soil Treatment

Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 558-572
Author(s):  
Bhaskar C. S. Chittoori ◽  
Tasria Rahman ◽  
Malcolm Burbank

Expansive soils generally recognized as swell-shrink soils have been a problem for civil infrastructure for a long time. Engineers are in search of sustainable stabilization alternatives to counter these problematic soils. Microbial-induced calcium carbonate precipitation (MICP) is a promising biocementation process that can improve the properties of expansive soil through calcium carbonate precipitation. Past research has shown promise for the use of MICP in mitigating swelling distress from expansive soils. In this research, MICP via biostimulation was attempted by mixing enrichment and cementation solutions with soils in an effort to develop a new alternative to shallow chemical stabilization. Three soils with varying clay contents (30%, 40%, and 70%) and plasticity characteristics were selected, and soils were treated by mixing with enrichment solutions followed by cementation solutions. Five different mellowing periods, three different curing periods, and two types of cementation solutions were studied to optimize the method. Treatment effectiveness was evaluated using unconfined compression tests, calcium carbonate tests, and free swell index tests. Results showed that an increase in the mellowing period beyond two days was not beneficial for any of the three soils tested in this research. It was determined that the best improvement was observed at two days of mellowing and seven days of curing.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaobing Li ◽  
Chunshun Zhang ◽  
Hongbin Xiao ◽  
Weichang Jiang ◽  
Junfeng Qian ◽  
...  

Most of the research studies on the improvement of expansive soils are focused on reducing their expansive properties; however, there are few studies on the impact of the soil compressibility after the improvement. In this paper, through indoor high-pressure consolidation tests, the recent microbial-induced calcium carbonate precipitation (MICP) technology is studied to improve the compression characteristics of the expansive soil. The significant effect of different microbial concentrations (achieved by different number of treatments) on the compression deformation is revealed with the hyperbolic function that involves two parameters with clear physical meanings. In particular, after 6 times of treatment with the microbial solution, the compression characteristics of the expansive soil reach the best improvement effect; continuing to increase the number of microbial treatments is, otherwise, not conducive to improving the soil compression performance. Also, a dramatical increase of the structural strength of the microbial-treated expansive soil is presented and investigated. Moreover, we performed a scanning electron microscope (SEM) experiment and confirmed the existence of crystals due to mineralization. This study shows that MICP is an effective and environmentally friendly means of reducing the compressibility of the expansive soil.


2021 ◽  
Vol 109 ◽  
pp. 103391
Author(s):  
Catherine M. Kirkland ◽  
Arda Akyel ◽  
Randy Hiebert ◽  
Jay McCloskey ◽  
Jim Kirksey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document