coral sand
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 72)

H-INDEX

12
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-19
Author(s):  
S.K. Das ◽  
S.K. Verma ◽  
A. Das

The present study highlights the effects of strain rate on the critical state response of crushable granular materials. A set of drained triaxial tests is simulated using the discrete element method (DEM) to understand the rate effects on the stress-strain and volumetric behaviour of the granular sample. The DEM parameters are obtained by comparing the stress-strain and particle crushing behaviour of in-house experimental analysis on crushable coral sand under a slow strain rate. In DEM, the particles are subjected to varied strain rates under different initial confining pressures and initial densities to capture the rate effects on the macroscopic responses until the critical state. It is seen that crushing increases with increasing confining stress. However, a higher strain rate induces relatively lower crushing and higher strength in terms of both peak stress and residual stress. It is observed that in pressure-volume space, the critical state line alters with the increasing strain rate of the crushable samples, especially at high confining conditions, whereas strain rate effect on critical state seems to be negligible at low confining conditions due to the absence of particle crushing.


2022 ◽  
Vol 10 (1) ◽  
pp. 87
Author(s):  
Giannis Saitis ◽  
Anna Karkani ◽  
Eleni Koutsopoulou ◽  
Konstantinos Tsanakas ◽  
Satoru Kawasaki ◽  
...  

Beachrocks are a window to the past environmental, geological, sedimentological and morphological conditions that were dominant in the coastal zone during their formation. Furthermore, beachrocks have the ability to reduce coastal erosion impact on sandy beaches. This study focuses on the beachrock formation mechanism through the comparison of cement characteristics, mineral chemistry and sedimentology of beachrock occurrences from two different geological and geographical localities: Diolkos, Corinth, Greece and Sumuide, Okinawa, Japan. In addition, in order to investigate a potential soft engineering method to protect coasts from erosion, artificial beachrock samples were created in vitro using sand samples and ureolytic bacteria from both areas under accelerating conditions. For Okinawa artificial beachrock experiments, the bacteria Pararhodobacter sp. was used, and for Diolkos, it was the bacteria Micrococcus yunnainensis sp. For the natural beachrocks, a multi-analytical approach was accomplished with the use of microscopic investigation, a scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray fluorescence. Correlations were made between natural and artificial beachrocks. Results have shown that Diolkos beachrock was formed in the upper part of the intertidal zone, consisting of detrital material originating from the local bedrock, while Sumuide beachrock formed in the low intertidal–upper subtidal zone, consisting of coral sand and foraminifera fragments. For the artificial beachrocks, three samples were created using the microbial-induced carbonate precipitation (MICP) method, one from Diolkos (Corinth, Greece) and two from Sumuide (Okinawa, Japan). Diolkos artificial beachrock was better consolidated in comparison to Sumuide. Our investigation has shown that bacterial density was the key factor for the creation of the artificial beachrocks, while the samples’ granulometry played a secondary role in the process. The laboratory artificial beachrocks show encouraging results for a new soft engineering method to encounter beach erosion while keeping an ecofriendly character by saving energy, material resources and gas emissions. Artificial beachrocks can share the same properties of a natural beachrock and can contribute positively to marine biodiversity as a natural rocky habitat.


Author(s):  
Xiaocong Liang ◽  
Pingshan Chen ◽  
Jing Wang ◽  
Qingchang Qiu ◽  
Xiong Xu
Keyword(s):  

2021 ◽  
Vol 239 ◽  
pp. 109808
Author(s):  
Qi Wu ◽  
Xuanming Ding ◽  
Yanling Zhang ◽  
Zhixiong Chen ◽  
Yu Zhang

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5571
Author(s):  
Yue Qin ◽  
Qiankun Wang ◽  
Dongsheng Xu ◽  
Wei Chen

The cracks in the cemented coral sand (CCS) would result in significant damage for the marine structures. In this study, the effective and efficiency of microcapsules in self-healing CCS under various water environments were investigated with a series of experimental tests. Firstly, a new preparation method was proposed to fabricate the microcapsules with a wide particle size distribution, which was adapted to the high porosity, large difference in pore size, and uneven distribution of CCS. Secondly, the mechanical properties of microcapsule-based CCS were examined by the uniaxial compressive tests and split Hopkinson pressure bar (SHPB) tests. The results indicated that the microcapsule could improve the initial strength of CCS. The CCS mixed with 3% of the microcapsule that synthesized under a rotating speed of 450 rmp had the highest compressive strength at the initial strain state. Finally, the healing efficiency of microcapsule for CCS was investigated in various environmental conditions, which were freshwater, seawater, and water of various pH values. The non-destructive experiment approach of the piezoelectric transducer (PZT) test was adopted to evaluate the healing efficiency of microcapsules. Experimental results indicated that the healing efficiency of microcapsules in freshwater and seawater were 75% and 59.56%, respectively. In contrast, the acid and alkali water environment would greatly reduce the healing efficiency of microcapsules in CCS.


Sign in / Sign up

Export Citation Format

Share Document