scholarly journals Adaptive Backstepping Sliding Mode Control for Direct Driven Hydraulics

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 1
Author(s):  
Shuzhong Zhang ◽  
Tianyi Chen ◽  
Fuquan Dai

Due to the advantages of high energy efficiency and environmental friendliness, the electro-hydraulic actuator (EHA) plays a vital role in fluid power control. One variant of EHA, double pump direct driven hydraulics (DDH), is proposed, which consists of double fixed-displacement pumps, a servo motor, an asymmetric cylinder and auxiliary components. This paper proposes an adaptive backstepping sliding mode control (ABSMC) strategy for DDH to eliminate the adverse effect produced by parametric uncertainty, nonlinear characteristics and the uncertain external disturbance. Based on theoretical analysis, the nonlinear system model is built and transformed. Furthermore, by defining the sliding manifold and selecting a proper Lyapunov function, the nesting problems (of the designed variable and adaptive law) caused by uncertain coefficients are solved. Moreover, the adaptive backstepping control and the sliding mode control are combined to boost system robustness. At the same time, the controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. Simulations of the DDH are performed with the proposed control strategy and proportional–integral–differential (PID), respectively. The results show that the proposed control strategy can achieve better position tracking and stronger robustness under parameter changing compared with PID.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sibo Huang ◽  
Jianfeng Huang ◽  
Zhaoquan Cai ◽  
Han Cui

Quadrotor UAV has a strong mobility and flexibility in flight and has been widely used in military and civil fields in recent years. An adaptive backstepping sliding mode control (ABSMC) method is proposed to address the trajectory tracking control problem of quadrotor UAV based on actuator fault and external disturbance. In the proposed method, the switching gain of adaptive sliding mode control is constructed in the backstepping design process in order to suppress the chattering effect of sliding mode control effectively by differential iteration. Firstly, the dynamic model of quadrotor UAV with actuator fault and external disturbance is proposed, and then the controllers are designed based on the ABSMC method. Finally, the comparison experiments between sliding mode control (SMC) method and ABSMC method show that the ABSMC method can not only effectively suppress the chattering problem for the SMC method but also perform a perfect control effect.


Author(s):  
Tao Xu ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Qiuwei Wang

For the purpose of anti-puncture and lightweight, a new type of mechanical elastic wheel (MEW) is constructed. However, the large radial stiffness of MEW has a negative effect on ride comfort. To make up for the disadvantage, this paper proposes a novel control strategy consisting of backstepping control and integral sliding-mode control, considering the uncertainties of active suspension and MEW. First, an active suspension system matching MEW is established, discussing the impact of uncertainties. The nonlinear radial characteristic of MEW is fitted based on the previous experiment results. Then, in order to derive ideal motions, an ideal suspension system combining sky-hook and ground-hook damping control is introduced. Next, ignoring the nonlinear characteristics and external random disturbance, a backstepping controller is designed to track ideal variables. Combined with the backstepping control law, an integral sliding-mode control strategy is given, further taking parameter uncertainty and external disturbance into account. To tackle chattering problem, an adaptive state variable matrix is applied. By using Lyapunov stability theory, the whole scheme proves to be robust and convergent. Finally, co-simulations with Carsim and MATLAB/Simulink are carried out. By analyzing the simulation results, it can be concluded that the vehicle adopting backstepping sliding-mode control performs best, with excellent real-time performance and robustness.


Sign in / Sign up

Export Citation Format

Share Document