scholarly journals Time-Series Study of Associations between Rates of People Affected by Disasters and the El Niño Southern Oscillation (ENSO) Cycle

Author(s):  
Holly Ching Yu Lam ◽  
Andy Haines ◽  
Glenn McGregor ◽  
Emily Ying Yang Chan ◽  
Shakoor Hajat

The El Niño Southern Oscillation (ENSO) is a major driver of climatic variability that can have far reaching consequences for public health globally. We explored whether global, regional and country-level rates of people affected by natural disasters (PAD) are linked to ENSO. Annual numbers of PAD between 1964–2017 recorded on the EM-DAT disaster database were combined with UN population data to create PAD rates. Time-series regression was used to assess de-trended associations between PAD and 2 ENSO indices: Oceanic Niño Index (ONI) and multivariate El Niño Index (MEI). Over 95% of PAD were caused by floods, droughts or storms, with over 75% of people affected by these three disasters residing in Asia. Globally, drought-related PAD rate increased sharply in El Niño years (versus neutral years). Flood events were the disaster type most strongly associated with El Niño regionally: in South Asia, flood-related PAD increased by 40.5% (95% CI 19.3% to 65.6%) for each boundary point increase in ONI (p = 0.002). India was found to be the country with the largest increase in flood-related PAD rates following an El Niño event, with the Philippines experiencing the largest increase following La Niña. Multivariate ENSO Index (MEI)-analyses showed consistent results. These findings can be used to inform disaster preparedness strategies.

Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 282 ◽  
Author(s):  
Glenn McGregor ◽  
Kristie Ebi

The El Niño Southern Oscillation (ENSO) is an important mode of climatic variability that exerts a discernible impact on ecosystems and society through alterations in climate patterns. For this reason, ENSO has attracted much interest in the climate and health science community, with many analysts investigating ENSO health links through considering the degree of dependency of the incidence of a range of climate diseases on the occurrence of El Niño events. Because of the mounting interest in the relationship between ENSO as a major mode of climatic variability and health, this paper presents an overview of the basic characteristics of the ENSO phenomenon and its climate impacts, discusses the use of ENSO indices in climate and health research, and outlines the present understanding of ENSO health associations. Also touched upon are ENSO-based seasonal health forecasting and the possible impacts of climate change on ENSO and the implications this holds for future assessments of ENSO health associations. The review concludes that there is still some way to go before a thorough understanding of the association between ENSO and health is achieved, with a need to move beyond analyses undertaken through a purely statistical lens, with due acknowledgement that ENSO is a complex non-canonical phenomenon, and that simple ENSO health associations should not be expected.


2020 ◽  
Vol 37 (5) ◽  
pp. 346-364
Author(s):  
Muhammad Imran Azam ◽  
Jiali Guo ◽  
Xiaotao Shi ◽  
Muhammad Yaseen ◽  
Muhammad Tayyab ◽  
...  

2008 ◽  
Vol 136 (7) ◽  
pp. 2523-2542 ◽  
Author(s):  
Mark LaJoie ◽  
Arlene Laing

Abstract Cloud-to-ground (CG) lightning flashes from the National Lightning Detection Network are analyzed to determine if the El Niño–Southern Oscillation (ENSO) cycle influences lighting activity along the Gulf Coast region. First, an updated climatology of lightning was developed for the region. Flash density maps are constructed from an 8-yr dataset (1995–2002) and compared with past lightning climatologies. Second, lightning variability is compared with the phases of ENSO. Winter lightning distributions are compared with one published study of ENSO and lightning days in the Southeast. Flash density patterns are, overall, consistent with past U.S. lightning climatology. However, the peak flash density for the annual mean was less than observed in previous climatologies, which could be due to the disproportionately large percentage of cool ENSO periods compared to previous lightning climatologies. The highest annual lightning counts were observed in 1997, which consisted of mostly warm ENSO seasons; the 1997–98 El Niño was one of the strongest on record. The lowest lightning counts were observed in 2000, which had mostly cool or neutral phases of ENSO including the lowest Niño-3.4 anomaly of the study period. Analysis of winter season lightning flash densities substantiated the role of the ENSO cycle in winter season lightning fluctuations. Winter lightning activity increased dramatically during the 1997–98 El Niño. The lowest winter flash densities are associated with cool ENSO phases. Although 8 yr is inadequate to establish a long-term pattern, results indicate that ENSO influences lightning and that further study is warranted. As more years of lightning data are acquired, a more complete climatology can be developed.


2020 ◽  
Vol 24 (11) ◽  
pp. 5473-5489 ◽  
Author(s):  
Justin Schulte ◽  
Frederick Policielli ◽  
Benjamin Zaitchik

Abstract. Wavelet coherence is a method that is commonly used in hydrology to extract scale-dependent, nonstationary relationships between time series. However, we show that the method cannot always determine why the time-domain correlation between two time series changes in time. We show that, even for stationary coherence, the time-domain correlation between two time series weakens if at least one of the time series has changing skewness. To overcome this drawback, a nonlinear coherence method is proposed to quantify the cross-correlation between nonlinear modes embedded in the time series. It is shown that nonlinear coherence and auto-bicoherence spectra can provide additional insight into changing time-domain correlations. The new method is applied to the El Niño–Southern Oscillation (ENSO) and all-India rainfall (AIR), which is intricately linked to hydrological processes across the Indian subcontinent. The nonlinear coherence analysis showed that the skewness of AIR is weakly correlated with that of two ENSO time series after the 1970s, indicating that increases in ENSO skewness after the 1970s at least partially contributed to the weakening ENSO–AIR relationship in recent decades. The implication of this result is that the intensity of skewed El Niño events is likely to overestimate India's drought severity, which was the case in the 1997 monsoon season, a time point when the nonlinear wavelet coherence between AIR and ENSO reached its lowest value in the 1871–2016 period. We determined that the association between the weakening ENSO–AIR relationship and ENSO nonlinearity could reflect the contribution of different nonlinear ENSO modes to ENSO diversity.


2009 ◽  
Vol 48 (8) ◽  
pp. 1718-1724 ◽  
Author(s):  
Martha G. Roberts ◽  
David Dawe ◽  
Walter P. Falcon ◽  
Rosamond L. Naylor

Abstract This study uses regression analysis to evaluate the relationships among sea surface temperature anomalies (SSTA) averaged over the Niño-3.4 region (5°N–5°S, 120°–170°W), rainfall, and rice production, area harvested, and yield in Luzon, the large island on which most Philippine rice is grown. Previous research on Philippine rice production and El Niño–Southern Oscillation (ENSO) has found negative associations between El Niño events and rice yields in rainfed systems. This analysis goes further and shows that both irrigated and rainfed ecosystems are impacted. It also compares impacts on area harvested and yield. Variations in average July–September Niño-3.4 SSTAs explain approximately 29% of the interannual variations in the deviations of total January–June (dry season) rice production from a polynomial trend for 1970–2005. In contrast, no impact was found on July–December production in either year t or t + 1. The impact of ENSO on dry-season rice production in Luzon appears to be primarily due to changes in area harvested rather than yield. Production declines for rainfed ecosystems are relatively larger than for irrigated ecosystems: a 1°C increase in average July–September Niño-3.4 SSTA is associated with a 3.7% decrease in irrigated dry-season production but with a 13.7% decline in rainfed dry-season production.


Sign in / Sign up

Export Citation Format

Share Document