scholarly journals A Study on The Driving Factors and Spatial Spillover of Carbon Emission Intensity in The Yangtze River Economic Belt under Double Control Action

Author(s):  
Xuhui Ding ◽  
Zhongyao Cai ◽  
Qianqian Xiao ◽  
Suhui Gao

It is greatly important to promote low-carbon green transformations in China, for implementing the emission reduction commitments and global climate governance. However, understanding the spatial spillover effects of carbon emissions will help the government achieve this goal. This paper selects the carbon-emission intensity panel data of 11 provinces in the Yangtze River Economic Belt from 2004 to 2016. Then, this paper uses the Global Moran’s I to explore the spatial distribution characteristics and spatial correlation of carbon emission intensity. Furthermore, this paper constructs a spatial econometric model to empirically test the driving path and spillover effects of relevant factors. The results show that there is a significant positive correlation with the provincial carbon intensity in the Yangtze River Economic Belt, but this trend is weakening. The provinces of Jiangsu, Zhejiang, and Shanghai are High–High agglomerations, while the provinces of Yunnan and Guizhou are Low–Low agglomerations. Economic development, technological innovation, and foreign direct investion (FDI) have positive effects on the reduction of carbon emissions, while industrialization has a negative effect on it. There is also a significant positive spatial spillover effect of the industrialization level and technological innovation level. The spatial spillover effects of FDI and economic development on carbon emission intensity fail to pass a significance test. Therefore, it is necessary to promote cross-regional low-carbon development, accelerate the R&D of energy-saving and emission-reduction technologies, actively enhance the transformation and upgrade industrial structures, and optimize the opening up of the region and the patterns of industrial transfer.

Author(s):  
Decai Tang ◽  
Yan Zhang ◽  
Brandon J Bethel

The Yangtze River Economic Belt (YREB) is an essential part of China’s goal of reducing its national carbon emissions. Focusing on economic and social development, the development of science and technology, carbon sinks, energy consumption, and carbon emissions, this paper uses “the Technique for Order of Preference by Similarity to Ideal Solution mode” (TOPSIS) and “an obstacle factor diagnosis method” to measure the reduction capacity of each province and municipality of the YREB. Key obstacles to achieving the goal of carbon emission reduction are also identified. The main finding is that the emission reduction capacities of Shanghai, Jiangsu and Zhejiang in China’s east is far greater than that of all other provinces and municipalities, the main obstacle of Shanghai, Jiangsu, and Zhejiang are carbon sinks, energy consumption and carbon emission, and other provinces and municipalities are social and economic development. Taking into consideration those evaluation results and obstacles, paths for carbon emission reduction are delineated through a four-quadrant matrix method with intent to provide suitable references for the development of a low-carbon economy in the YREB.


2019 ◽  
Vol 14 (3) ◽  
pp. 381-385 ◽  
Author(s):  
Yan Li ◽  
Guilin Dai

Abstract Energy saving and emission reduction have been not only a slogan but also a policy in this modern society where the phenomenon of greenhouse is exacerbated. In this study, calculation method of carbon emission and integrated parallel acquisition technique (IPAT) scenario prediction model were combined to predict the changes of total carbon emissions, energy structure distribution, and carbon emission intensity under three measures of energy saving and emission reduction in the next ten years in Shandong, China. The results showed that the total carbon emission increased year by year, and the coal ratio and carbon emission intensity decreased under the natural scenario; the total carbon emission in the weakly constrained scenario would increase annually until 2029, the amplitude was smaller than that of the natural scenario, while the coal ratio and carbon emission intensity would decrease, and the amplitude was larger than that of the natural scenario. Under the strongly constrained scenario, the total carbon emission would increase annually before 2025, and the amplitude was smaller than the weakly constrained scenario, while the coal ratio and carbon emission intensity would decrease, and the amplitude was larger than the weakly constrained scenario.


2019 ◽  
Vol 118 ◽  
pp. 04014
Author(s):  
Tao Yi ◽  
Mohan Qiu ◽  
Zhengang Zhang ◽  
Song Mu ◽  
Yu Tian

Under the mandatory push of meeting carbon emission reduction commitments proposed in the Paris Agreement, the analysis on the peaking time of China’s carbon emissions deserves enough attention. This paper focuses on the peaking times of total carbon emissions (TCE) and carbon emission intensity (CEI) in the Yangtze River Delta (YRD). According to the development of carbon emissions in YRD and related targets in the 13th Five-Year Plan, the peaking times of TCE and CEI in different scenarios are predicted based on the influence mechanism analysis of carbon emissions in YRD from the perspective of energy, economy and society. Considering the development characteristics of China at this stage, this paper introduces several new indicators such as full-time equivalent of research and development (R&D) personnel and investment in environmental pollution control. Based on the study results, several policy recommendations are put forward to fulfil China’s carbon emission reduction commitments.


2020 ◽  
Vol 143 ◽  
pp. 02026
Author(s):  
Jiwen Chen ◽  
Zuxu Zou

With the continuous acceleration of the modernization process, the Eco-environmental problems of the Yangtze River Economic Zone in China have become increasingly prominent, which makes the study of carbon emission efficiency become a long-term concern. Based on the panel data of 11 provinces and cities of the Yangtze River Economic Zone in 2009~2016, this paper calculates the DEA-Malmquist index of the Total Factor Carbon Emission Efficiency containing undesirable output in various provinces and cities and three major regions. By studying the DEA-Malmquist index and its decomposition, the results show that the Total Factor Carbon Emission Efficiency of various regions in the Yangtze River Economic Zone presents a growth trend, and its main contribution comes from technological progress. In the future, the emission reduction rules of the Yangtze River Economic Zone will be transformed from the traditional top-down emission reduction model to the bottom-up “independent contribution” emission reduction model.


2021 ◽  
Vol 13 (24) ◽  
pp. 13821
Author(s):  
Tianling Zhang ◽  
Panda Su ◽  
Hongbing Deng

As the world’s largest carbon emitter, China has been committed to carbon emission reduction and green development. Under the goal of “double carbon”, adjusting the industrial structure and promoting the development of producer services are regarded as effective emission reduction paths. In this paper, from the perspective of market entry of enterprises, we firstly investigate the transmission mechanism between market entry of enterprises and industrial agglomeration and summarize the carbon emission reduction mechanism of producer services. Based on the panel data of 110 prefecture-level cities in China’s Yangtze River Economic Belt (YREB) from 2003 to 2017, we analyze the impact of producer services on carbon emission reduction by using the dynamic spatial panel model. The empirical results show that China’s urban carbon dioxide emissions have noticeable spatial spillover effects and high emission club clustering characteristics and exhibit a noticeable snowball effect and leakage effect in time and space dimensions. The development of the producer services can effectively reduce carbon emission levels, effectively solving the dilemma of “stabilizing growth and promoting emission reduction”. Furthermore, there is an apparent synergistic effect between enterprises’ market entry and industrial agglomeration. The agglomeration of producer services can effectively promote the entry of innovative new enterprises, thus increasing the carbon emission reduction effect. However, due to resource mismatch and isomorphic development, this carbon emission reduction effect has apparent industrial heterogeneity and regional heterogeneity. Finally, this paper makes suggestions for optimizing regional industrial structure, strengthening inter-regional linkage cooperation, and promoting the advanced development of the producer services.


2020 ◽  
Vol 12 (19) ◽  
pp. 8097
Author(s):  
Li-Ming Xue ◽  
Shuo Meng ◽  
Jia-Xing Wang ◽  
Lei Liu ◽  
Zhi-Xue Zheng

Emission reduction strategies based on provinces are key for China to mitigate its carbon emission intensity (CEI). As such, it is valuable to analyze the driving mechanism of CEI from a provincial view, and to explore a coordinated emission mitigation mechanism. Based on spatial econometrics, this study conducts a spatial-temporal effect analysis on CEI, and constructs a Spatial Durbin Model on the Panel data (SDPM) of CEI and its eight influential factors: GDP, urbanization rate (URB), industrial structure (INS), energy structure (ENS), energy intensity (ENI), technological innovation (TEL), openness level (OPL), and foreign direct investment (FDI). The main findings are as follows: (1) overall, there is a significant and upward trend of the spatial autocorrelation of CEI on 30 provinces in China. (2) The spatial spillover effect of CEI is positive, with a coefficient of 0.083. (3) The direct effects of ENI, ENS and TEL are significantly positive in descending order, while INS and GDP are significantly negative. The indirect effects of URB and ENS are significantly positive, while GDP, ENI, OPL and FDI are significantly negative in descending order. Economic and energy-related emission reduction measures are still crucial to the achievement of CEI reduction targets for provinces in China.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shuping Cheng ◽  
Lingjie Meng ◽  
Lu Xing

PurposeThe purpose of this paper is to examine the effects of energy technological innovation on carbon emissions in China from 2001 to 2016.Design/methodology/approachConditional mean (CM) methods are first applied to implement our investigation. Then, considering the tremendous heterogeneity in China, quantile regression is further employed to comprehensively investigate the potential heterogeneous effect between energy technological innovation and carbon emission intensity.FindingsThe results suggest that renewable energy technological innovation has a significantly positive effect on carbon emission intensity in lower quantile areas and a negative effect in higher quantile areas. Contrarily, fossil energy technological innovation exerts a negative correlation with carbon emission intensity in lower quantile areas and a positive effect on carbon emission intensity in higher quantiles areas.Originality/valueConsidering that energy consumption is the main source of CO2 emissions, it is of great importance to study the impact of energy technological innovation on carbon emissions. However, the previous studies mainly focus on the impact of integrated technological innovation on carbon emissions, ignoring the impact of energy technological innovation on carbon emissions mitigation. To fill this gap, we construct an extended STIRPAT model to examine the effects of renewable energy technological innovation and fossil energy technological innovation on carbon emissions in this paper. The results can provide a reference for the government to formulate carbon mitigation policies.


Sign in / Sign up

Export Citation Format

Share Document