scholarly journals Decompressive Craniectomy Improves QTc Interval in Traumatic Brain Injury Patients

Author(s):  
Wojciech Dabrowski ◽  
Dorota Siwicka-Gieroba ◽  
Chiara Robba ◽  
Rafael Badenes ◽  
Katarzyna Kotfis ◽  
...  

Background: Traumatic brain injury (TBI) is commonly associated with cardiac dysfunction, which may be reflected by abnormal electrocardiograms (ECG) and/or contractility. TBI-related cardiac disorders depend on the type of cerebral injury, the region of brain damage and the severity of the intracranial hypertension. Decompressive craniectomy (DC) is commonly used to reduce intra-cranial hypertension (ICH). Although DC decreases ICH rapidly, its effect on ECG has not been systematically studied. The aim of this study was to analyze the changes in ECG in patients undergoing DC. Methods: Adult patients without previously known cardiac diseases treated for isolated TBI with DC were studied. ECG variables, such as: spatial QRS-T angle (spQRS-T), corrected QT interval (QTc), QRS and T axes (QRSax and Tax, respectively), STJ segment and the index of cardio-electrophysiological balance (iCEB) were analyzed before DC and at 12–24 h after DC. Changes in ECG were analyzed according to the occurrence of cardiac arrhythmias and 28-day mortality. Results: 48 patients (17 female and 31 male) aged 18–64 were studied. Intra-cranial pressure correlated with QTc before DC (p < 0.01, r = 0.49). DC reduced spQRS-T (p < 0.001) and QTc interval (p < 0.01), increased Tax (p < 0.01) and changed STJ in a majority of leads but did not affect QRSax and iCEB. The iCEB was relatively increased before DC in patients who eventually experienced cardiac arrhythmias after DC (p < 0.05). Higher post-DC iCEB was also noted in non-survivors (p < 0.05), although iCEB values were notably heart rate-dependent. Conclusions: ICP positively correlates with QTc interval in patients with isolated TBI, and DC for relief of ICH reduces QTc and spQRS-T. However, DC might also increase risk for life-threatening cardiac arrhythmias, especially in ICH patients with notably prolonged QTc before and increased iCEB after DC.

2009 ◽  
Vol 26 (6) ◽  
pp. E7 ◽  
Author(s):  
Shirley I. Stiver

Decompressive craniectomy is widely used to treat intracranial hypertension following traumatic brain injury (TBI). Two randomized trials are currently underway to further evaluate the effectiveness of decompressive craniectomy for TBI. Complications of this procedure have major ramifications on the risk-benefit balance in decision-making during evaluation of potential surgical candidates. To further evaluate the complications of decompressive craniectomy, a review of the literature was performed following a detailed search of PubMed between 1980 and 2009. The author restricted her study to literature pertaining to decompressive craniectomy for patients with TBI. An understanding of the pathophysiological events that accompany removal of a large piece of skull bone provides a foundation for understanding many of the complications associated with decompressive craniectomy. The author determined that decompressive craniectomy is not a simple, straightforward operation without adverse effects. Rather, numerous complications may arise, and they do so in a sequential fashion at specific time points following surgical decompression. Expansion of contusions, new subdural and epidural hematomas contralateral to the decompressed hemisphere, and external cerebral herniation typify the early perioperative complications of decompressive craniectomy for TBI. Within the 1st week following decompression, CSF circulation derangements manifest commonly as subdural hygromas. Paradoxical herniation following lumbar puncture in the setting of a large skull defect is a rare, potentially fatal complication that can be prevented and treated if recognized early. During the later phases of recovery, patients may develop a new cognitive, neurological, or psychological deficit termed syndrome of the trephined. In the longer term, a persistent vegetative state is the most devastating of outcomes of decompressive craniectomy. The risk of complications following decompressive craniectomy is weighed against the life-threatening circumstances under which this surgery is performed. Ongoing trials will define whether this balance supports surgical decompression as a first-line treatment for TBI.


2019 ◽  
Author(s):  
Katrin Rauen ◽  
Lara Reichelt ◽  
Philipp Probst ◽  
Barbara Sch&auml;pers ◽  
Friedemann M&uuml;ller ◽  
...  

Trauma ◽  
2020 ◽  
pp. 146040862093576
Author(s):  
Nida Fatima ◽  
Mujeeb-Ur-Rehman ◽  
Samia Shaukat ◽  
Ashfaq Shuaib ◽  
Ali Raza ◽  
...  

Objectives Decompressive craniectomy is a last-tier therapy in the treatment of raised intracranial pressure after traumatic brain injury. We report the association of demographic, radiographic, and injury characteristics with outcome parameters in early (<24 h) and late (≥24 h) decompressive craniectomy following traumatic brain injury. Methods We retrospectively identified 204 patients (158 (early decompressive craniectomy) and 46 (late decompressive craniectomy)), with a median age of 34 years (range 2–78 years) between 2015 and 2018. The primary endpoint was Glasgow Outcome Scale Extended (GOSE) at 60 days, while secondary endpoints included Glasgow Coma Score (GCS) at discharge, mortality at 30 days, and length of hospital stay. Regression analysis was used to assess the independent predictive variables of functional outcome. Results With a clinical follow-up of 60 days, the good functional outcome (GOSE = 5–8) was 73.5% versus 74.1% (p = 0.75) in early and late decompressive craniectomy, respectively. GCS ≥ 9 at discharge was 82.2% versus 91.3% (p = 0.21), mortality at 30 days was 10.8% versus 8.7% (p = 0.39), and length of stay in the hospital was 21 days versus 28 days (p = 0.20), respectively, in early and late decompressive craniectomy groups. Univariate analysis identified that GCS at admission (0.07 (0.32–0.18; < 0.05)) and indication for decompressive craniectomy (3.7 (1.3–11.01; 0.01)) are significantly associated with good functional outcome. Multivariate regression analysis revealed that GCS at admission (<9/≥9) (0.07 (0.03–0.16; <0.05)) and indication for decompressive craniectomy (extradural alone/ other hematoma) (1.75 (1.09–3.25; 0.02)) were significant independent predictors of good functional outcome irrespective of the timing of surgery. Conclusions Our results corroborate that the timing of surgery does not affect the outcome parameters. Furthermore, GCS ≥ 9 and/or extra dural hematoma are associated with relatively good clinical outcome after decompressive craniectomy.


2018 ◽  
Vol 129 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Aditya Vedantam ◽  
Claudia S. Robertson ◽  
Shankar P. Gopinath

OBJECTIVEFew studies have reported on changes in quantitative cerebral blood flow (CBF) after decompressive craniectomy and the impact of these measures on clinical outcome. The aim of the present study was to evaluate global and regional CBF patterns in relation to cerebral hemodynamic parameters in patients after decompressive craniectomy for traumatic brain injury (TBI).METHODSThe authors studied clinical and imaging data of patients who underwent xenon-enhanced CT (XeCT) CBF studies after decompressive craniectomy for evacuation of a mass lesion and/or to relieve intractable intracranial hypertension. Cerebral hemodynamic parameters prior to decompressive craniectomy and at the time of the XeCT CBF study were recorded. Global and regional CBF after decompressive craniectomy was measured using XeCT. Regional cortical CBF was measured under the craniectomy defect as well as for each cerebral hemisphere. Associations between CBF, cerebral hemodynamics, and early clinical outcome were assessed.RESULTSTwenty-seven patients were included in this study. The majority of patients (88.9%) had an initial Glasgow Coma Scale score ≤ 8. The median time between injury and decompressive surgery was 9 hours. Primary decompressive surgery (within 24 hours) was performed in the majority of patients (n = 18, 66.7%). Six patients had died by the time of discharge. XeCT CBF studies were performed a median of 51 hours after decompressive surgery. The mean global CBF after decompressive craniectomy was 49.9 ± 21.3 ml/100 g/min. The mean cortical CBF under the craniectomy defect was 46.0 ± 21.7 ml/100 g/min. Patients who were dead at discharge had significantly lower postcraniectomy CBF under the craniectomy defect (30.1 ± 22.9 vs 50.6 ± 19.6 ml/100 g/min; p = 0.039). These patients also had lower global CBF (36.7 ± 23.4 vs 53.7 ± 19.7 ml/100 g/min; p = 0.09), as well as lower CBF for the ipsilateral (33.3 ± 27.2 vs 51.8 ± 19.7 ml/100 g/min; p = 0.07) and contralateral (36.7 ± 19.2 vs 55.2 ± 21.9 ml/100 g/min; p = 0.08) hemispheres, but these differences were not statistically significant. The patients who died also had significantly lower cerebral perfusion pressure (52 ± 17.4 vs 75.3 ± 10.9 mm Hg; p = 0.001).CONCLUSIONSIn the presence of global hypoperfusion, regional cerebral hypoperfusion under the craniectomy defect is associated with early mortality in patients with TBI. Further study is needed to determine the value of incorporating CBF studies into clinical decision making for severe traumatic brain injury.


2018 ◽  
Vol 8 (5) ◽  
pp. e00907 ◽  
Author(s):  
Hongtao Sun ◽  
Hongda Wang ◽  
Yunfeng Diao ◽  
Yue Tu ◽  
Xiaohong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document