Outcomes after decompressive craniectomy for severe traumatic brain injury in children

2008 ◽  
Vol 2008 ◽  
pp. 296-297
Author(s):  
A.B. Valadka
2021 ◽  
Author(s):  
Alex Vicino ◽  
Philippe Vuadens ◽  
Bertrand Léger ◽  
Charles Benaim

Abstract PurposeDecompressive craniectomy (DC) can rapidly reduce intracranial pressure and save lives in the acute phase of severe traumatic brain injury (TBI) or stroke, but little is known about the long-term outcome after DC. We evaluated quality of life (QoL) a few years after DC for severe TBI/stroke.MethodsThe following data were collected for stroke/TBI patients hospitalized for neurorehabilitation after DC: 1) at discharge, motor and cognitive sub-scores of the Functional Independence Measure (motor-FIM [score 13-91] and cognitive-FIM [score 5-35]) and 2) more than 4 years after discharge, the QOLIBRI health-related QoL (HR-QoL) score (0-100; <60 representing low or impaired QoL) and the return to work (RTW: 0%, partial, 100%)ResultsWe included 88 patients (66 males, median age 38 [interquartile range 26.3-51.0], 65 with TBI/23 stroke); 46 responded to the HR-QoL questionnaire. Responders and non-responders had similar characteristics (age, sex, functional levels upon discharge). Median motor-FIM and cognitive-FIM scores were 85/91 and 27/35, with no significant difference between TBI and stroke patients. Long-term QoL was borderline low for TBI patients and within normal values for stroke patients (score 58.0[42.0-69.0] vs. 67.0[54.0-81.5], p=0.052). RTW was comparable between the groups (62% full time).ConclusionWe already knew that DC can save the lives of TBI or stroke patients in the acute phase and this study suggests that their long-term quality of life is generally quite acceptable.


2008 ◽  
Vol 108 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Chi Long Ho ◽  
Chee Meng Wang ◽  
Kah Keow Lee ◽  
Ivan Ng ◽  
Beng Ti Ang

Object This study addresses the changes in brain oxygenation, cerebrovascular reactivity, and cerebral neurochemistry in patients following decompressive craniectomy for the control of elevated intracranial pressure (ICP) after severe traumatic brain injury (TBI). Methods Sixteen consecutive patients with isolated TBI and elevated ICP, who were refractory to maximal medical therapy, underwent decompressive craniectomy over a 1-year period. Thirteen patients were male and 3 were female. The mean age of the patients was 38 years and the median Glasgow Coma Scale score on admission was 5. Results Six months following TBI, 11 patients had a poor outcome (Group 1, Glasgow Outcome Scale [GOS] Score 1–3), whereas the remaining 5 patients had a favorable outcome (Group 2, GOS Score 4 or 5). Decompressive craniectomy resulted in a significant reduction (p < 0.001) in the mean ICP and cerebrovascular pressure reactivity index to autoregulatory values (< 0.3) in both groups of patients. There was a significant improvement in brain tissue oxygenation (PbtO2) in Group 2 patients from 3 to 17 mm Hg and an 85% reduction in episodes of cerebral ischemia. In addition, the durations of abnormal PbtO2 and biochemical indices were significantly reduced in Group 2 patients after decompressive craniectomy, but there was no improvement in the biochemical indices in Group 1 patients despite surgery. Conclusions Decompressive craniectomy, when used appropriately in protocol-driven intensive care regimens for the treatment of recalcitrant elevated ICP, is associated with a return of abnormal metabolic parameters to normal values in patients with eventually favorable outcomes.


2008 ◽  
Vol 109 (4) ◽  
pp. 685-690 ◽  
Author(s):  
Matthias H. Morgalla ◽  
Bernd E. Will ◽  
Florian Roser ◽  
Marcos Tatagiba

Object A decompressive craniectomy can be a life-saving procedure to relieve critically increased intracranial pressure. The survival of a patient is important as well as the subsequent and long-term quality of life. In this paper the authors' goal was to investigate whether long-term clinical results justify the use of a decompressive craniectomy. Methods Thirty-three patients (20 males and 13 females) with a mean age of 36.3 years (range 13–60 years) with severe traumatic brain injury (Grades III and IV) and subsequent massive brain swelling were examined. For postoperative assessment the Barthel Index was used. A surgical intervention was based on the following criteria: 1) The intracranial pressure could not be controlled by conservative treatment and constantly exceeded 30 mm Hg (cerebral perfusion pressure < 50 mm Hg). 2) Transcranial Doppler ultrasonography revealed only a systolic flow pattern or systolic peaks. 3) There were no other major injuries. 4) The patient was not older than 60 years. Results One-fifth of all patients died and one-fifth remained in a vegetative state. Mild deficits were seen in 6 of 33 patients. A full rehabilitation (Barthel Index 90–100) was achieved in 13 patients (39.4%). Five patients could resume their former occupation, and another 4 had to change jobs. Conclusions Age remains to be one of the most important exclusion factors. Decompressive craniectomy provided good clinical results in nearly 40% of patients who were otherwise most likely to die. Therefore, long-term results justify the use of decompressive craniectomy in this case series.


2015 ◽  
Vol 16 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Maroun J. Mhanna ◽  
Wael EI Mallah ◽  
Margaret Verrees ◽  
Rajiv Shah ◽  
Dennis M. Super

OBJECT Decompressive craniectomy (DC) for the management of severe traumatic brain injury (TBI) is controversial. The authors sought to determine if DC improves the outcome of children with severe TBI. METHODS In a retrospective, case-control study, medical records of all patients admitted to the pediatric ICU between May 1998 and May 2008 with severe TBI and treated with DC were identified and matched to patients who were treated medically without DC. Medical records were reviewed for patients’ demographic data and baseline characteristics. RESULTS During the study period, 17 patients with severe TBI treated with DC at a median of 2 hours (interquartile range [IQR] 1–14 hours) after admission were identified and matched to 17 contemporary controls. On admission, there were no differences between DC and control patients regarding age (10.2 ± 5.9 years vs 12.4 ± 5.4 years, respectively [mean ± SD]), sex, weight, Glasgow Coma Scale score (median 5 [IQR 3–7] vs 4 [IQR 3–6], respectively; p = 0.14), or the highest intracranial pressure (median 42 [IQR 22–54] vs 30 [IQR 21–36], respectively; p = 0.77). However, CT findings were significant for a higher rate of herniation and cerebral edema among patients with DC versus controls (7/17 vs 2/17, respectively, had herniation [p = 0.05] and 14/17 vs 6/17, respectively, had cerebral edema [p = 0.006]). Overall there were no significant differences in survival between patients with DC and controls (71% [12/17] vs 82% [14/17], respectively; p = 0.34). However, among survivors, at 4 years (IQR 1–6 years) after the TBI, 42% (5/12) of the DC patients had mild disability or a Glasgow Outcome Scale score of 5 vs none (0/14) of the controls (p = 0.012). CONCLUSIONS In this retrospective, small case-control study, the authors have shown that early DC in pediatric patients with severe TBI improves outcome in survivors. Future prospective randomized controlled studies are needed to confirm these findings.


Sign in / Sign up

Export Citation Format

Share Document