scholarly journals Carbon Storage Change Analysis and Emission Reduction Suggestions under Land Use Transition: A Case Study of Henan Province, China

Author(s):  
Dongyang Xiao ◽  
Haipeng Niu ◽  
Jin Guo ◽  
Suxia Zhao ◽  
Liangxin Fan

The significant spatial heterogeneity among river basin ecosystems makes it difficult for local governments to carry out comprehensive governance for different river basins in a special administrative region spanning multi-river basins. However, there are few studies on the construction of a comprehensive governance mechanism for multi-river basins at the provincial level. To fill this gap, this paper took Henan Province of China, which straddles four river basins, as the study region. The chord diagram, overlay analysis, and carbon emission models were applied to the remote sensing data of land use to analyze the temporal and spatial patterns of carbon storage caused by land-use changes in Henan Province from 1990 to 2018 to reflect the heterogeneity of the contribution of the four basins to human activities and economic development. The results revealed that food security land in the four basins decreased, while production and living land increased. Ecological conservation land was increased over time in the Yangtze River Basin. In addition, the conversion from food security land to production and living land was the common characteristic for the four basins. Carbon emission in Henan increased from 134.46 million tons in 1990 to 553.58 million tons in 2018, while its carbon absorption was relatively stable (1.67–1.69 million tons between 1990 and 2018). The carbon emitted in the Huai River Basin was the main contributor to Henan Province’s total carbon emission. The carbon absorption in Yellow River Basin and Yangtze River Basin had an obvious spatial agglomeration effect. Finally, considering the current need of land spatial planning in China and the goal of carbon neutrality by 2060 set by the Chinese government, we suggested that carbon sequestration capacity should be further strengthened in Yellow River Basin and Yangtze River Basin based on their respective ecological resource advantages. For future development in Hai River Basin and Huai River Basin, coordinating the spatial allocation of urban scale and urban green space to build an ecological city is a key direction to embark upon.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2035
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Changjun Qi ◽  
Xinnan Zhang ◽  
Hanwen Zhang

The construction and operation of water storage and hydropower projects affects the structure of water ecosystems of downstream rivers, and the establishment of ecological flow in rivers below the water storage and hydropower projects has significant impacts on maintaining the stability of river ecosystems. A database was established based on 2000–2017 environmental impact assessment (EIA) reports on water storage and hydropower projects in China and ecological flow (e-flow) methods, and the three widely used e-flow methods for water storage and hydropower projects in China were identified on the database. Furthermore, an ecological flow satisfaction degree model was used to evaluate the methods using long series of historical hydrological data from the hydrological stations in the Yellow River basin, the Yangtze River basin, and the Liao River basin. The results showed that hydrological methods are the type most often used for water storage and hydropower projects in China, including the Tennant method, the minimum monthly average flow with 90% guarantee rate method (Mm9M method), and the measured historical minimum daily average flow rate method (MDM method). However, the ecological flow methods selected are not significantly different among different basins, indicating that the selection of ecological flow methods is rather arbitrary, and adaptability analysis is not available. The results of the ecological flow satisfaction model showed that the Tennant method is not suitable for large river basins. The results of this study can provide technical support for establishment and management decisions surrounding ecological flow.


2017 ◽  
Vol 21 (1) ◽  
pp. 169-181 ◽  
Author(s):  
Xiaomang Liu ◽  
Tiantian Yang ◽  
Koulin Hsu ◽  
Changming Liu ◽  
Soroosh Sorooshian

Abstract. On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basins on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. The evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.


2021 ◽  
Vol 13 (7) ◽  
pp. 3822
Author(s):  
Chunsheng Wu ◽  
Guoxia Ma ◽  
Weishan Yang ◽  
Ying Zhou ◽  
Fei Peng ◽  
...  

The Yellow River Basin and the Yangtze River Basin are the two most important watersheds in China, which consist of several key ecological function areas and are crucial in terms of economic contributions. The evaluation of the ecosystem service value and the quantitative acquisition of the regional ecological quality status are necessary for supporting the ecological protection and high-quality development of the two basins. By considering basic data and adopting different ecological function models, this study was carried out to evaluate the value of ecosystem services in the Yellow River Basin and the Yangtze River Basin from 2015 to 2018 in terms of provisioning services, regulating services, and cultural services. Additionally, analysis was conducted in combination with economic indicators. The results showed that there were great differences in the ecosystem patterns between the Yellow River Basin, where grassland accounted for 45% of land use, and the Yangtze River Basin, where forest accounted for 39% of land use. The values of the ecosystem services of the two basins had similar spatial distributions, with higher values upstream (west) followed by downstream (east) and lower values in the middle (central China). The total annual ecosystem value of the Yangtze River Basin was more than three times that of the Yellow River Basin. In addition, the ecosystem services value of most counties in both basins was higher than their GDP, and there was a positive trend of transforming ecological benefits into economic benefits in the Yangtze River Basin. This research provides a methodology for evaluating ecosystem valuation. The results are helpful for formulating and implementing eco-compensation and payments for ecosystem service policies among different regions in the basins, and the results lay a foundation for the spatial planning and high-quality development paths of key basin areas in China.


2021 ◽  
Vol 220 ◽  
pp. 14-21
Author(s):  
Zhao-Xian Su ◽  
Guo-Xing Zhang ◽  
Long Xu ◽  
Gong-Han Geng ◽  
Yi-Cun Wang ◽  
...  

2017 ◽  
Vol 27 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Fang Wang ◽  
Quansheng Ge ◽  
Qibiao Yu ◽  
Huaxin Wang ◽  
Xinliang Xu

2010 ◽  
Vol 136 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Yaqin Qiu ◽  
Yangwen Jia ◽  
Jincheng Zhao ◽  
Xuehong Wang ◽  
Jeff Bennett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document