scholarly journals Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater

Author(s):  
Omar Israel González Peña ◽  
Miguel Ángel López Zavala ◽  
Héctor Cabral Ruelas

Pharmaceuticals enhance our quality of life; consequently, their consumption is growing as a result of the need to treat ageing-related and chronic diseases and changes in the clinical practice. The market revenues also show an historic growth worldwide motivated by the increase on the drug demand. However, this positivism on the market is fogged because the discharge of pharmaceuticals and their metabolites into the environment, including water, also increases due to their inappropriate management, treatment and disposal; now, worldwide, this fact is recognized as an environmental concern and human health risk. Intriguingly, researchers have studied the most effective methods for pharmaceutical removal in wastewater; however, the types of pharmaceuticals investigated in most of these studies do not reflect the most produced and consumed pharmaceuticals on the market. Hence, an attempt was done to analyze the pharmaceutical market, drugs consumption trends and the pharmaceutical research interests worldwide. Notwithstanding, the intensive research work done in different pharmaceutical research fronts such as disposal and fate, environmental impacts and concerns, human health risks, removal, degradation and development of treatment technologies, found that such research is not totally aligned with the market trends and consumption patterns. There are other drivers and interests that promote the pharmaceutical research. Thus, this review is an important contribution to those that are interested not only on the pharmaceutical market and drugs consumption, but also on the links, the drivers and interests that motivate and determine the research work on certain groups of pharmaceuticals on water and wastewater.

2006 ◽  
Vol 14 (2) ◽  
pp. 559-570 ◽  
Author(s):  
F. Quercia ◽  
A. Vecchio ◽  
M. Falconi ◽  
L. Togni ◽  
E. Wcislo ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866 ◽  
Author(s):  
Marzena Rachwał ◽  
Małgorzata Wawer ◽  
Mariola Jabłońska ◽  
Wioletta Rogula-Kozłowska ◽  
Patrycja Rogula-Kopiec

The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices.


Author(s):  
Quang Phan Dinh ◽  
Sylvester Addai‐Arhin ◽  
Huiho Jeong ◽  
Willy Cahya Nugraha ◽  
Pham Hung Viet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document