scholarly journals A Comparison of Two Motion Sensors for the Assessment of Free-Living Physical Activity of Adolescents

2010 ◽  
Vol 7 (4) ◽  
pp. 1558-1576 ◽  
Author(s):  
Roman Cuberek ◽  
Walid El Ansari ◽  
Karel Frömel ◽  
Krzysztof Skalik ◽  
Erik Sigmund

2010 ◽  
Vol 7 (5) ◽  
pp. 662-670 ◽  
Author(s):  
James J. McClain ◽  
Teresa L. Hart ◽  
Renee S. Getz ◽  
Catrine Tudor-Locke

Background:This study evaluated the utility of several lower cost physical activity (PA) assessment instruments for detecting PA volume (steps) and intensity (time in MVPA or activity time) using convergent methods of assessment.Methods:Participants included 26 adults (9 male) age 27.3 ± 7.1 years with a BMI of 23.8 ± 2.8 kg/m2. Instruments evaluated included the Omron HJ-151 (OM), New Lifestyles NL-1000 (NL), Walk4Life W4L Pro (W4L), and ActiGraph GT1M (AG). Participants wore all instruments during a laboratory phase, consisting of 10 single minute treadmill walking bouts ranging in speed from 40 to 112 m/min, and immediate following the laboratory phase and during the remainder of their free-living day (11.3 ± 1.5 hours). Previously validated AG MVPA cutpoints were used for comparison with OM, NL, and W4L MVPA or activity time outputs during the laboratory and free-living phase.Results:OM and NL produced similar MVPA estimates during free-living to commonly used AG walking cutpoints, and W4L activity time estimates were similar to one AG lifestyle cutpoint evaluated.Conclusion:Current findings indicate that the OM, NL, and W4L, ranging in price from $15 to $49, can provide reasonable estimates of free-living MVPA or activity time in comparison with a range of AG walking and lifestyle cutpoints.



Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5625
Author(s):  
Sylvain Jung ◽  
Mona Michaud ◽  
Laurent Oudre ◽  
Eric Dorveaux ◽  
Louis Gorintin ◽  
...  

This article presents an overview of fifty-eight articles dedicated to the evaluation of physical activity in free-living conditions using wearable motion sensors. This review provides a comprehensive summary of the technical aspects linked to sensors (types, number, body positions, and technical characteristics) as well as a deep discussion on the protocols implemented in free-living conditions (environment, duration, instructions, activities, and annotation). Finally, it presents a description and a comparison of the main algorithms and processing tools used for assessing physical activity from raw signals.



Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1877
Author(s):  
Rieke Trumpf ◽  
Wiebren Zijlstra ◽  
Peter Haussermann ◽  
Tim Fleiner

Applicable and accurate assessment methods are required for a clinically relevant quantification of habitual physical activity (PA) levels and sedentariness in older adults. The aim of this study is to compare habitual PA and sedentariness, as assessed with (1) a wrist-worn actigraph, (2) a hybrid motion sensor attached to the lower back, and (3) a self-estimation based on a questionnaire. Over the course of one week, PA of 58 community-dwelling subjectively healthy older adults was recorded. The results indicate that actigraphy overestimates the PA levels in older adults, whereas sedentariness is underestimated when compared to the hybrid motion sensor approach. Significantly longer durations (hh:mm/day) for all PA intensities were assessed with the actigraph (light: 04:19; moderate to vigorous: 05:08) when compared to the durations (hh:mm/day) that were assessed with the hybrid motion sensor (light: 01:24; moderate to vigorous: 02:21) and the self-estimated durations (hh:mm/day) (light: 02:33; moderate to vigorous: 03:04). Actigraphy-assessed durations of sedentariness (14:32 hh:mm/day) were significantly shorter when compared to the durations assessed with the hybrid motion sensor (20:15 hh:mm/day). Self-estimated duration of light intensity was significantly shorter when compared to the results of the hybrid motion sensor. The results of the present study highlight the importance of an accurate quantification of habitual PA levels and sedentariness in older adults. The use of hybrid motion sensors can offer important insights into the PA levels and PA types (e.g., sitting, lying) and it can increase the knowledge about mobility-related PA and patterns of sedentariness, while actigraphy appears to be not recommendable for this purpose.



1991 ◽  
Vol 38 (3) ◽  
pp. 221-229 ◽  
Author(s):  
G.A.L. Meijer ◽  
K.R. Westerterp ◽  
F.M.H. Verhoeven ◽  
H.B.M. Koper ◽  
F. ten Hoor


2018 ◽  
Vol 26 (2) ◽  
pp. 254-258 ◽  
Author(s):  
Giovanni Mario Pes ◽  
Maria Pina Dore ◽  
Alessandra Errigo ◽  
Michel Poulain




1982 ◽  
Vol 16 (3) ◽  
pp. 240-243
Author(s):  
Wayne T. Corbett ◽  
Harry M. Schey ◽  
A. W. Green

The mean and standard deviation over 24 h for 3 groups of animals - active, intermediate and inactive - in physical activity units were 10948 ± 3360, 2611 ± 1973 and 484 ± 316 respectively. The differences were significant ( P = 0·004), demonstrating the ability of the method to distinguish between groups that can be visibly differentiated. The small within-animal physical activity standard deviation (18·85 PAU) obtained in another group, suggests that it also yields reliable physical activity measurements for non-human primates. The monitoring device used can discriminate between individual nonhuman primate physical activity levels in a free-living environment and does not alter daily behaviour. This makes possible the study of the relationship between physical activity and atherosclerosis in nonhuman primates.



2010 ◽  
Vol 15 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Judy M. Bradley ◽  
Lisa Kent ◽  
J. Stuart Elborn ◽  
Brenda O'Neill


Sign in / Sign up

Export Citation Format

Share Document