scholarly journals Clustering Indoor Positioning Data Using E-DBSCAN

2021 ◽  
Vol 10 (10) ◽  
pp. 669
Author(s):  
Dayu Cheng ◽  
Guo Yue ◽  
Tao Pei ◽  
Mingbo Wu

Indoor positioning data reflects human mobility in indoor spaces. Revealing patterns of indoor trajectories may help us understand human indoor mobility. Clustering methods, which are based on the measurement of similarity between trajectories, are important tools for identifying those patterns. However, due to the specific characteristics of indoor trajectory data, it is difficult for clustering methods to measure the similarity between trajectories. These characteristics are manifested in two aspects. The first is that the nodes of trajectories may have clear semantic attributes; for example, in a shopping mall, the node of a trajectory may contain information such as the store type and visit duration time, which may imply a customer’s interest in certain brands. The semantic information can only be obtained when the position precision is sufficiently high so that the relationship between the customer and the store can be determined, which is difficult to realize for outdoor positioning, either using GPS or mobile base station, due to the relatively large positioning error. If the tendencies of customers are to be considered, the similarity of geometrical morphology does not reflect the real similarity between trajectories. The second characteristic is the complex spatial shapes of indoor trajectory caused by indoor environments, which include elements such as closed spaces, multiple obstacles and longitudinal extensions. To deal with these challenges caused by indoor trajectories, in this article we proposed a new method called E-DBSCAN, which extended DBSCAN to trajectory clustering of indoor positioning data. First, the indoor location data were transformed into a sequence of residence points with rich semantic information, such as the type of store customer visited, stay time and spatial location of store. Second, a Weighted Edit Distance algorithm was proposed to measure the similarity of the trajectories. Then, an experiment was conducted to verify the correctness of E-DBSCAN using five days of positioning data in a shopping mall, and five shopping behavior patterns were identified and potential explanations were proposed. In addition, a comparison was conducted among E-DBSCAN, the k-means and DBSCAN algorithms. The experimental results showed that the proposed method can discover customers’ behavioral pattern in indoor environments effectively.

2021 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Jin Zhu ◽  
Dayu Cheng ◽  
Weiwei Zhang ◽  
Ci Song ◽  
Jie Chen ◽  
...  

People spend more than 80% of their time in indoor spaces, such as shopping malls and office buildings. Indoor trajectories collected by indoor positioning devices, such as WiFi and Bluetooth devices, can reflect human movement behaviors in indoor spaces. Insightful indoor movement patterns can be discovered from indoor trajectories using various clustering methods. These methods are based on a measure that reflects the degree of similarity between indoor trajectories. Researchers have proposed many trajectory similarity measures. However, existing trajectory similarity measures ignore the indoor movement constraints imposed by the indoor space and the characteristics of indoor positioning sensors, which leads to an inaccurate measure of indoor trajectory similarity. Additionally, most of these works focus on the spatial and temporal dimensions of trajectories and pay less attention to indoor semantic information. Integrating indoor semantic information such as the indoor point of interest into the indoor trajectory similarity measurement is beneficial to discovering pedestrians having similar intentions. In this paper, we propose an accurate and reasonable indoor trajectory similarity measure called the indoor semantic trajectory similarity measure (ISTSM), which considers the features of indoor trajectories and indoor semantic information simultaneously. The ISTSM is modified from the edit distance that is a measure of the distance between string sequences. The key component of the ISTSM is an indoor navigation graph that is transformed from an indoor floor plan representing the indoor space for computing accurate indoor walking distances. The indoor walking distances and indoor semantic information are fused into the edit distance seamlessly. The ISTSM is evaluated using a synthetic dataset and real dataset for a shopping mall. The experiment with the synthetic dataset reveals that the ISTSM is more accurate and reasonable than three other popular trajectory similarities, namely the longest common subsequence (LCSS), edit distance on real sequence (EDR), and the multidimensional similarity measure (MSM). The case study of a shopping mall shows that the ISTSM effectively reveals customer movement patterns of indoor customers.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668697 ◽  
Author(s):  
Jichao Jiao ◽  
Zhongliang Deng

To achieve high accuracy in indoor positioning using a smartphone, there are two limitations: (1) limited computational and memory resources of the smartphone and (2) the human walking in large buildings. To address these issues, we propose a new feature descriptor by deeply combining histogram of oriented gradients and local phase quantization. This feature is a local phase quantization of a salient histogram of oriented gradient visualizing image, which is robust in indoor scenarios. Moreover, we introduce a base station–based indoor positioning system for assisting to reduce the image matching at runtime. The experimental results show that accurate and efficient indoor location positioning is achieved.


Author(s):  
M. Ramezani ◽  
D. Acharya ◽  
F. Gu ◽  
K. Khoshelham

Indoor positioning is a fundamental requirement of many indoor location-based services and applications. In this paper, we explore the potential of low-cost and widely available visual and inertial sensors for indoor positioning. We describe the Visual-Inertial Odometry (VIO) approach and propose a measurement model for omnidirectional visual-inertial odometry (OVIO). The results of experiments in two simulated indoor environments show that the OVIO approach outperforms VIO and achieves a positioning accuracy of 1.1 % of the trajectory length.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4839
Author(s):  
Aritz Bilbao-Jayo ◽  
Aitor Almeida ◽  
Ilaria Sergi ◽  
Teodoro Montanaro ◽  
Luca Fasano ◽  
...  

In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system’s performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user’s next location with 67% accuracy.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-21
Author(s):  
Deke Guo ◽  
Xiaoqiang Teng ◽  
Yulan Guo ◽  
Xiaolei Zhou ◽  
Zhong Liu

Due to the rapid development of indoor location-based services, automatically deriving an indoor semantic floorplan becomes a highly promising technique for ubiquitous applications. To make an indoor semantic floorplan fully practical, it is essential to handle the dynamics of semantic information. Despite several methods proposed for automatic construction and semantic labeling of indoor floorplans, this problem has not been well studied and remains open. In this article, we present a system called SiFi to provide accurate and automatic self-updating service. It updates semantics with instant videos acquired by mobile devices in indoor scenes. First, a crowdsourced-based task model is designed to attract users to contribute semantic-rich videos. Second, we use the maximum likelihood estimation method to solve the text inferring problem as the sequential relationship of texts provides additional geometrical constraints. Finally, we formulate the semantic update as an inference problem to accurately label semantics at correct locations on the indoor floorplans. Extensive experiments have been conducted across 9 weeks in a shopping mall with more than 250 stores. Experimental results show that SiFi achieves 84.5% accuracy of semantic update.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4595 ◽  
Author(s):  
Clara Gomez ◽  
Alejandra C. Hernandez ◽  
Ramon Barber

Exploration of unknown environments is a fundamental problem in autonomous robotics that deals with the complexity of autonomously traversing an unknown area while acquiring the most important information of the environment. In this work, a mobile robot exploration algorithm for indoor environments is proposed. It combines frontier-based concepts with behavior-based strategies in order to build a topological representation of the environment. Frontier-based approaches assume that, to gain the most information of an environment, the robot has to move to the regions on the boundary between open space and unexplored space. The novelty of this work is in the semantic frontier classification and frontier selection according to a cost–utility function. In addition, a probabilistic loop closure algorithm is proposed to solve cyclic situations. The system outputs a topological map of the free areas of the environment for further navigation. Finally, simulated and real-world experiments have been carried out, their results and the comparison to other state-of-the-art algorithms show the feasibility of the exploration algorithm proposed and the improvement that it offers with regards to execution time and travelled distance.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Jiafeng Shi ◽  
Jie Shen ◽  
Zdeněk Stachoň ◽  
Yawei Chen

<p><strong>Abstract.</strong> With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?</p>


2014 ◽  
Vol 971-973 ◽  
pp. 1747-1751 ◽  
Author(s):  
Lei Zhang ◽  
Hai Qiang Chen ◽  
Wei Jie Li ◽  
Yan Zhao Liu ◽  
Run Pu Wu

Text clustering is a popular research topic in the field of text mining, and now there are a lot of text clustering methods catering to different application requirements. Currently, Weibo data acquisition is through the API provided by big microblogging platforms. In this essay, we will discuss the algorithm of extracting popular topics posted by Weibo users by text clustering after massive data collection. Due to the fact that traditional text analysis may not be applicable to short texts used in Weibo, text clustering shall be carried out through combining multiple posts into long texts, based on their features (forwards, comments and followers, etc.). Either frequency-based or density-based short text clustering can deliver in most cases. The former is applicable to find hot topics from large Weibo short texts, and the latter is applicable to find abnormal contents. Both the two methods use semantic information to improve the accuracy of clustering. Besides, they improve the performance of clustering through the parallelism.


Sign in / Sign up

Export Citation Format

Share Document