scholarly journals Using Open Source Data to Identify Transit Deserts in Four Major Chinese Cities

2020 ◽  
Vol 9 (2) ◽  
pp. 100 ◽  
Author(s):  
Junfeng Jiao ◽  
Mingming Cai

The concept of transit deserts stems from the concept of food deserts. There is substantial research on transit deserts in developed countries. However, there is no known research that has studied this subject in Chinese cities. Using open-source data, this paper identified transit desert areas in four major Chinese cities (Beijing, Shanghai, Wuhan, Chengdu). The results show that: (1) In these four cities, the transit desert areas are mainly concentrated in city centers and hardly occur in any suburban areas, which is very different from the cases in the US. (2) Shanghai has the largest transit-dependent population living in transit deserts, followed by Beijing, Chengdu, and Wuhan. Chengdu has the smallest transit desert areas, followed by Shanghai, Wuhan, and Beijing. (3) An oversized transit-dependent population and incomplete transit systems in these cities might contribute to the transit deserts’ occurrences. (4) Different distribution of population density, traveling preference, and transportation investment policy in Chinese and American cities might contribute to the different findings. By examining transit desert problems in major Chinese cities, this study brought people’s attention to the gap between transit demand and supply in China.

2020 ◽  
Vol 247 ◽  
pp. 111838 ◽  
Author(s):  
Yanfei Zhong ◽  
Yu Su ◽  
Siqi Wu ◽  
Zhendong Zheng ◽  
Ji Zhao ◽  
...  

2019 ◽  
Vol 229 (4) ◽  
pp. e233-e234
Author(s):  
Alison A. Smith ◽  
Lena A. Hummel ◽  
Thomas M. Yusin ◽  
Theresa Nguyen ◽  
Marcus Hoof ◽  
...  

2018 ◽  
Vol 80 (6) ◽  
pp. 457-461
Author(s):  
Carlos A. Morales-Ramirez ◽  
Pearlyn Y. Pang

Open-source data are information provided free online. It is gaining popularity in science research, especially for modeling species distribution. MaxEnt is an open-source software that models using presence-only data and environmental variables. These variables can also be found online and are generally free. Using all of these open-source data and tools makes species distribution modeling (SDM) more accessible. With the rapid changes our planet is undergoing, SDM helps understand future habitat suitability for species. Due to increasing interest in biogeographic research, SDM has increased for marine species, which were previously not commonly found in this modeling. Here we provide examples of where to obtain the data and how the modeling can be performed and taught.


2018 ◽  
Vol 231 ◽  
pp. 1100-1108 ◽  
Author(s):  
Alaa Alhamwi ◽  
Wided Medjroubi ◽  
Thomas Vogt ◽  
Carsten Agert

Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 158
Author(s):  
Andrew Weinert

As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations.


Sign in / Sign up

Export Citation Format

Share Document