scholarly journals S1P4 Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells

2018 ◽  
Vol 19 (5) ◽  
pp. 1279 ◽  
Author(s):  
Joseph Kulinski ◽  
Richard Proia ◽  
Elisabeth Larson ◽  
Dean Metcalfe ◽  
Ana Olivera
1996 ◽  
Vol 184 (3) ◽  
pp. 1061-1073 ◽  
Author(s):  
N Ghildyal ◽  
D S Friend ◽  
R L Stevens ◽  
K F Austen ◽  
C Huang ◽  
...  

The mouse mast cell protease granule tryptases designated mMCP-6 and mMCP-7 are encoded by highly homologous genes that reside on chromosome 17. Because these proteases are released when mast cells are activated, we sought a basis for distinctive functions by examining their fates in mice undergoing passive systemic anaphylaxis. 10 min-1 h after antigen (Ag) was administered to immunoglobulin (Ig)E-sensitized mice, numerous protease/proteoglycan macromolecular complexes appeared in the extracellular matrix adjacent to most tongue and heart mast cells of normal BALB/c mice and most spleen and liver mast cells of V3 mastocytosis mice. These complexes could be intensively stained by anti-mMCP-6 Ig but not by anti-mMCP-7 Ig. Shortly after Ag challenge of V3 mastocytosis mice, large amounts of properly folded, enzymatically active mMCP-7 were detected in the plasma. This plasma-localized tryptase was approximately 150 kD in its multimeric state and approximately 32 kD in its monomeric state, possessed an NH2 terminus identical to that of mature mMCP-7, and was not covalently bound to any protease inhibitor. Comparative protein modeling and electrostatic calculations disclosed that mMCP-6 contains a prominent Lys/Arg-rich domain on its surface, distant from the active site. The absence of this domain in mMCP-7 provides an explanation for its selective dissociation from the exocytosed macromolecular complex. The retention of exocytosed mMCP-6 in the extracellular matrix around activated tissue mast cells suggests a local action. In contrast, the rapid dissipation of mMCP-7 from granule cores and its inability to be inactivated by circulating protease inhibitors suggests that this tryptase cleaves proteins located at more distal sites.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Hajime Karasuyama ◽  
Yusuke Tsujimura ◽  
Kazushige Obata ◽  
Kaori Mukai ◽  
Hideto Nishikado ◽  
...  

2017 ◽  
Vol 214 (9) ◽  
pp. 2491-2506 ◽  
Author(s):  
Gökhan Cildir ◽  
Harshita Pant ◽  
Angel F. Lopez ◽  
Vinay Tergaonkar

Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document