scholarly journals Myosin Head Configurations in Resting and Contracting Murine Skeletal Muscle

2018 ◽  
Vol 19 (9) ◽  
pp. 2643 ◽  
Author(s):  
Weikang Ma ◽  
Henry Gong ◽  
Thomas Irving

Transgenic mouse models have been important tools for studying the relationship of genotype to phenotype for human diseases, including those of skeletal muscle. We show that mouse skeletal muscle can produce high quality X-ray diffraction patterns establishing the mouse intact skeletal muscle X-ray preparation as a potentially powerful tool to test structural hypotheses in health and disease. A notable feature of the mouse model system is the presence of residual myosin layer line intensities in contracting mouse muscle patterns. This provides an additional tool, along with the I1,1/I1,0 intensity ratio, for estimating the proportions of active versus relaxed myosin heads under a given set of conditions that can be used to characterize a given physiological condition or mutant muscle type. We also show that analysis of the myosin layer line intensity distribution, including derivation of the myosin head radius, Rm, may be used to study the role of the super-relaxed state in myosin regulation. When the myosin inhibitor blebbistatin is used to inhibit force production, there is a shift towards a highly quasi-helically ordered configuration that is distinct from the normal resting state, indicating there are more than one helically ordered configuration for resting crossbridges.

1983 ◽  
Vol 96 (6) ◽  
pp. 1797-1802 ◽  
Author(s):  
R W Kensler ◽  
M Stewart

A procedure has been developed for isolating and negatively staining vertebrate skeletal muscle thick filaments that preserves the arrangement of the myosin crossbridges. Electron micrographs of these filaments showed a clear periodicity associated with crossbridges with an axial repeat of 42.9 nm. Optical diffraction patterns of these images showed clear layer lines and were qualitatively similar to published x-ray diffraction patterns, except that the 1/14.3-nm meridional reflection was somewhat weaker. Computer image analysis of negatively stained images of these filaments has enabled the number of strands to be established unequivocally. Both reconstructed images from layer line data and analysis of the phases of the inner maxima of the first layer line are consistent only with a three-stranded structure and cannot be reconciled with either two- or four-stranded models.


1989 ◽  
Vol 94 (3) ◽  
pp. 391-401
Author(s):  
R.W. Kensler ◽  
M. Stewart

A procedure has been developed for isolating gold-fish skeletal muscle thick filaments that preserves the near-helical arrangement of the myosin cross-bridges under relaxing conditions. These filaments have been examined by electron microscopy and computer image analysis. Electron micrographs of the negatively stained filaments showed a clear periodicity associated with the crossbridges, with an axial repeat every 42.9 nm. Computed Fourier transforms of the negatively stained filaments showed a series of layer lines confirming this periodicity, and were similar to the X-ray diffraction patterns of fish muscle obtained by J. Hartford and J. Squire. Analysis of the computed transform data and filtered images of the isolated fish filaments demonstrated that the myosin crossbridges lie along three strands. Platinum shadowing demonstrated that the strands have a right-handed orientation, and computed transforms and filtered images of the shadowed filaments suggest that the crossbridges are perturbed both axially and azimuthally from an ideal helical arrangement.


2011 ◽  
Vol 100 (3) ◽  
pp. 585a
Author(s):  
Srboljub M. Mijailovich ◽  
Boban Stojanovic ◽  
Thomas Irving

1963 ◽  
Vol 7 ◽  
pp. 252-255 ◽  
Author(s):  
E. H. Shaw

AbstractRat tail tendons were fixed in 4% formaldehyde at 250 g tension, soaked in nearly saturated solution of the amides involved, and dried while still under tension. X-ray diffraction patterns, taken with rotation around the collagen fiber axis, showed well-defined layer lines of the amide and usually substantial expansion of the collagen equatorial spacing.The layer lines on collagen, in two cases on abnormal or polymorphic axes, are clustered around the number 4.86 ± 0.33 Å, or a figure twice this, implying the presence of a repeating hydro gen-bond accepting group such as the carbonyl group at this interval. The prominent collagen layer line at 9.4 Å is approximately double this interval.


1989 ◽  
Vol 22 (1) ◽  
pp. 72-74 ◽  
Author(s):  
Y. Tajima ◽  
K. Okada ◽  
O. Yoshida ◽  
T. Seto ◽  
Y. Amemiya

Small-angle X-ray diffraction patterns from the anterior byssus retractor muscles of Mytilus edulis contracting tonically in response to stimulation with acetylcholine were recorded in a 30 s exposure with synchrotron radiation and a high-sensitivity X-ray area detector called an imaging plate. The 190 Å layer line from the thin filaments increased in intensity with increase in tonic tension up to 6 x 104 kg m−2. Above this value, the layer-line intensity remained almost constant and comparable to that for a contracting skeletal muscle, indicating that the same structural changes of the thin filaments occur in both muscles.


2002 ◽  
Vol 90 (9-11) ◽  
Author(s):  
Timothy E. Payne ◽  
W. K. Bertram ◽  
T. Itakura ◽  
M. D. Raven

SummaryThe amounts of clay minerals in geologic samples from the Australian arid zone were measured using the SIROQUANT program, which quantifies mineral abundances from X-ray diffraction patterns using the Rietveld method. The sorption of trace cesium on the same samples was investigated in batch experiments. The statistical relationships between the Cs distribution coefficients (K


1973 ◽  
Vol 133 (3) ◽  
pp. 605-606.1 ◽  
Author(s):  
E. D. T. Atkins ◽  
T. C. Laurent

Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating β-d-(1→4) and α-d-(1→4).


Sign in / Sign up

Export Citation Format

Share Document