scholarly journals Coarse-Grained Protein Dynamics Studies Using Elastic Network Models

2018 ◽  
Vol 19 (12) ◽  
pp. 3899 ◽  
Author(s):  
Yuichi Togashi ◽  
Holger Flechsig

Elastic networks have been used as simple models of proteins to study their slow structural dynamics. They consist of point-like particles connected by linear Hookean springs and hence are convenient for linear normal mode analysis around a given reference structure. Furthermore, dynamic simulations using these models can provide new insights. As the computational cost associated with these models is considerably lower compared to that of all-atom models, they are also convenient for comparative studies between multiple protein structures. In this review, we introduce examples of coarse-grained molecular dynamics studies using elastic network models and their derivatives, focusing on the nonlinear phenomena, and discuss their applicability to large-scale macromolecular assemblies.

2008 ◽  
Vol 2 ◽  
pp. BBI.S460 ◽  
Author(s):  
Lee-Wei Yang ◽  
Choon-Peng Chng

In this review, we summarize the progress on coarse-grained elastic network models (CG-ENMs) in the past decade. Theories were formulated to allow study of conformational dynamics in time/space frames of biological interest. Several highlighted models and their underlined hypotheses are introduced in physical depth. Important ENM offshoots, motivated to reproduce experimental data as well as to address the slow-mode-encoded configurational transitions, are also introduced. With the theoretical developments, computational cost is significantly reduced due to simplified potentials and coarse-grained schemes. Accumulating wealth of data suggest that ENMs agree equally well with experiment in describing equilibrium dynamics despite their distinct potentials and levels of coarse-graining. They however do differ in the slowest motional components that are essential to address large conformational changes of functional significance. The difference stems from the dissimilar curvatures of the harmonic energy wells described for each model. We also provide our views on the predictability of ‘open to close’ (open→close) transitions of biomolecules on the basis of conformational selection theory. Lastly, we address the limitations of the ENM formalism which are partially alleviated by the complementary CG-MD approach, to be introduced in the second paper of this two-part series.


2018 ◽  
Vol 11 (5) ◽  
Author(s):  
Shah Faisal Mohammad ◽  
Fawad Ali ◽  
Mueed Ur Rahman ◽  
Asim Muhammad

2013 ◽  
Author(s):  
Vincent Frappier ◽  
Rafael Najmanovich

Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cαonly representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.


2019 ◽  
Vol 47 (W1) ◽  
pp. W471-W476 ◽  
Author(s):  
Rasim Murat Aydınkal ◽  
Onur Serçinoğlu ◽  
Pemra Ozbek

AbstractProSNEx (Protein Structure Network Explorer) is a web service for construction and analysis of Protein Structure Networks (PSNs) alongside amino acid flexibility, sequence conservation and annotation features. ProSNEx constructs a PSN by adding nodes to represent residues and edges between these nodes using user-specified interaction distance cutoffs for either carbon-alpha, carbon-beta or atom-pair contact networks. Different types of weighted networks can also be constructed by using either (i) the residue-residue interaction energies in the format returned by gRINN, resulting in a Protein Energy Network (PEN); (ii) the dynamical cross correlations from a coarse-grained Normal Mode Analysis (NMA) of the protein structure; (iii) interaction strength. Upon construction of the network, common network metrics (such as node centralities) as well as shortest paths between nodes and k-cliques are calculated. Moreover, additional features of each residue in the form of conservation scores and mutation/natural variant information are included in the analysis. By this way, tool offers an enhanced and direct comparison of network-based residue metrics with other types of biological information. ProSNEx is free and open to all users without login requirement at http://prosnex-tool.com.


2016 ◽  
Vol 44 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Francesca Fanelli ◽  
Angelo Felline ◽  
Francesco Raimondi ◽  
Michele Seeber

G protein coupled receptors (GPCRs) are allosteric proteins whose functioning fundamentals are the communication between the two poles of the helix bundle. Protein structure network (PSN) analysis is one of the graph theory-based approaches currently used to investigate the structural communication in biomolecular systems. Information on system's dynamics can be provided by atomistic molecular dynamics (MD) simulations or coarse grained elastic network models paired with normal mode analysis (ENM–NMA). The present review article describes the application of PSN analysis to uncover the structural communication in G protein coupled receptors (GPCRs). Strategies to highlight changes in structural communication upon misfolding, dimerization and activation are described. Focus is put on the ENM–NMA-based strategy applied to the crystallographic structures of rhodopsin in its inactive (dark) and signalling active (meta II (MII)) states, highlighting changes in structure network and centrality of the retinal chromophore in differentiating the inactive and active states of the receptor.


Sign in / Sign up

Export Citation Format

Share Document