scholarly journals The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond

2019 ◽  
Vol 20 (3) ◽  
pp. 577 ◽  
Author(s):  
Helmut Kubista ◽  
Stefan Boehm ◽  
Matej Hotka

Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.

2021 ◽  
Vol 22 (19) ◽  
pp. 10342
Author(s):  
Denis P. Laryushkin ◽  
Sergei A. Maiorov ◽  
Valery P. Zinchenko ◽  
Sergei G. Gaidin ◽  
Artem M. Kosenkov

Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 μM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1–10 μM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.


2017 ◽  
Vol 14 (2) ◽  
pp. 2059-2074 ◽  
Author(s):  
Nam Nhut Phan ◽  
Chih-Yang Wang ◽  
Chien-Fu Chen ◽  
Zhengda Sun ◽  
Ming-Derg Lai ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 1035
Author(s):  
Maria Pia Giannoccaro ◽  
Patrizia Avoni ◽  
Rocco Liguori

The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.


2019 ◽  
Vol 216 (5) ◽  
pp. 250-253 ◽  
Author(s):  
Paul J. Harrison ◽  
Elizabeth M. Tunbridge ◽  
Annette C. Dolphin ◽  
Jeremy Hall

SummaryWe reappraise the psychiatric potential of calcium channel blockers (CCBs). First, voltage-gated calcium channels are risk genes for several disorders. Second, use of CCBs is associated with altered psychiatric risks and outcomes. Third, research shows there is an opportunity for brain-selective CCBs, which are better suited to psychiatric indications.


2003 ◽  
Vol 117 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Gary Chin ◽  
Yasir El-Sherif ◽  
Farah Jayman ◽  
Rima Estephan ◽  
Andrzej Wieraszko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document