scholarly journals Mechanistic Chromatographic Column Characterization for the Analysis of Flavonoids Using Quantitative Structure-Retention Relationships Based on Density Functional Theory

2020 ◽  
Vol 21 (6) ◽  
pp. 2053 ◽  
Author(s):  
Bogusław Buszewski ◽  
Petar Žuvela ◽  
Gulyaim Sagandykova ◽  
Justyna Walczak-Skierska ◽  
Paweł Pomastowski ◽  
...  

This work aimed to unravel the retention mechanisms of 30 structurally different flavonoids separated on three chromatographic columns: conventional Kinetex C18 (K-C18), Kinetex F5 (K-F5), and IAM.PC.DD2. Interactions between analytes and chromatographic phases governing the retention were analyzed and mechanistically interpreted via quantum chemical descriptors as compared to the typical ‘black box’ approach. Statistically significant consensus genetic algorithm-partial least squares (GA-PLS) quantitative structure retention relationship (QSRR) models were built and comprehensively validated. Results showed that for the K-C18 column, hydrophobicity and solvent effects were dominating, whereas electrostatic interactions were less pronounced. Similarly, for the K-F5 column, hydrophobicity, dispersion effects, and electrostatic interactions were found to be governing the retention of flavonoids. Conversely, besides hydrophobic forces and dispersion effects, electrostatic interactions were found to be dominating the IAM.PC.DD2 retention mechanism. As such, the developed approach has a great potential for gaining insights into biological activity upon analysis of interactions between analytes and stationary phases imitating molecular targets, giving rise to an exceptional alternative to existing methods lacking exhaustive interpretations.

2021 ◽  
Author(s):  
Alexe Haywood ◽  
Joseph Redshaw ◽  
Magnus Hanson-Heine ◽  
Adam Taylor ◽  
Alex Brown ◽  
...  

The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reac?tivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate, and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models out-performed the quantum chemical SVR models, along the dimension of each reaction compo?nent. The applicability of the models was assessed with respect to similarity to training. Prospec?tive predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalisability of the models, with particular interest along the aryl halide dimension.


2020 ◽  
Vol 18 (1) ◽  
pp. 576-583
Author(s):  
Xiaoling Hu ◽  
Xingang Jia ◽  
Kehe Su ◽  
Xuefan Gu

AbstractElectronic structural properties of the three different imidazolium-based ionic liquids, namely, 1-butyl-3-methyl imidazolium bromide (C4mimBr), 1-(4-hydroxybutyl)-3-methylimidazolium bromide (C4OHmimBr), and 1-(4-aminobutyl)-3-methylimidazolium bromide (C4NH2mimBr), were investigated with density functional theory at the B3LYP/6-311++G(d,p) level. The conformations of the mentioned cations were fully studied first using CONFLEX 8.A program. The quantum theory of atoms in molecules was used to investigate the nature of intramolecular interactions. The counterpoise-corrected ion pairs binding energies were obtained at the same level of theory. Natural bond orbital analyses show that the largest intra-molecular interaction comes from the orbital overlap between n(N1) and π* (N4–C5) in the mentioned compounds. The energy levels of frontier molecular orbitals (FMOs) are displayed. The global quantum chemical descriptors are also calculated based on the energy values of FMOs.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Xinliang Yu ◽  
Wenhao Yu ◽  
Bing Yi ◽  
Xueye Wang

AbstractAn artificial neural network (ANN) model was successfully developed for the modelling and prediction of the polarity parameter π used in the revised patterns scheme for the prediction of monomers reactivity ratios in radical polymerizations. Four quantum chemical descriptors based on density functional theory (DFT) calculations were used to develop the ANN model. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. Simulated with the final optimum BP neural network 4-4-1, the results show that the predicted parameter π values are in good agreement with the experimental ones, with the root mean square (rms) errors being 0.053 (R=0.960) for the training set and 0.070 (R=0.942) for the test set. The ANN model has better statistic quality than the MLR model, which indicates there are nonlinear relationships between these quantum chemical descriptors and the parameter π.


2021 ◽  
Author(s):  
Alexe Haywood ◽  
Joseph Redshaw ◽  
Magnus Hanson-Heine ◽  
Adam Taylor ◽  
Alex Brown ◽  
...  

The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reac?tivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate, and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models out-performed the quantum chemical SVR models, along the dimension of each reaction compo?nent. The applicability of the models was assessed with respect to similarity to training. Prospec?tive predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalisability of the models, with particular interest along the aryl halide dimension.


2019 ◽  
Vol 3 (3) ◽  
pp. 179-186
Author(s):  
Assia Belhassan ◽  
Samir Chtita ◽  
Tahar Lakhlifi ◽  
Mohammed Bouachrine

In this study, we have established two-dimensional quantitative structure propriety relationships (2D-QSPR) model, for a group of 78 molecules based on pyrazine, these molecules were subjected to a 2D-QSPR analyze for their odors thresholds propriety using stepwise Multiple Linear Regression (MLR). The 35 parameters are calculated for the 78 studied compounds using the Gaussian 09W, ChemOffice and ChemSketch softwares. Quantum chemical calculations are used to calculate electronic and quantum chemical descriptors, using the density functional theory (B3LYP/6-31G (d) DFT) methods.The model was used to predict the odors thresholds propriety of the test and training set compounds, and the statistical results exhibited high internal and external consistency as demonstrated by the validation methods.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


Sign in / Sign up

Export Citation Format

Share Document