scholarly journals Fullerene Negative Ions: Formation and Catalysis

2020 ◽  
Vol 21 (9) ◽  
pp. 3159
Author(s):  
Zineb Felfli ◽  
Kelvin Suggs ◽  
Nantambu Nicholas ◽  
Alfred Z. Msezane

We first explore negative-ion formation in fullerenes C44 to C136 through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Then, the formed negative ions C44ˉ to C136ˉ are used to investigate the catalysis of water oxidation to peroxide and water synthesis from H2 and O2. The exploited fundamental mechanism underlying negative-ion catalysis involves hydrogen bond strength-weakening/breaking in the transition state. Density Functional Theory transition state calculations found C60ˉ optimal for both water and peroxide synthesis, C100ˉ increases the energy barrier the most, and C136ˉ the most effective catalyst in both water synthesis and oxidation to H2O2.

Author(s):  
Zineb Felfli ◽  
Kelvin Suggs ◽  
Nantambu Nicholas ◽  
Alfred Z. Msezane

We first explore negative-ion formation in fullerenes C44, C60, C70, C98, C112, C120, C132 and C136 through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Water oxidation to peroxide and water synthesis from H2 and O2 are then investigated using the anionic catalysts C44ˉ to C136ˉ. The fundamental mechanism underlying negative-ion catalysis involves hydrogen bond strength-weakening in the transition state. DFT transition state calculations found C60ˉ numerically stable for both water and peroxide synthesis, C100ˉ increases the energy barrier the most and C136ˉ the most effective catalyst in both water synthesis and oxidation to H2O2.


2020 ◽  
Vol 21 (18) ◽  
pp. 6714
Author(s):  
Kelvin Suggs ◽  
Alfred Z. Msezane

The fundamental mechanism underlying negative-ion catalysis involves bond-strength breaking in the transition state (TS). Doubly-charged atomic/molecular anions are proposed as novel dynamic tunable catalysts, as demonstrated in water oxidation into peroxide. Density Functional Theory TS calculations have found a tunable energy activation barrier reduction ranging from 0.030 eV to 2.070 eV, with Si2−, Pu2−, Pa2− and Sn2− being the best catalysts; the radioactive elements usher in new application opportunities. C602− significantly reduces the standard C60− TS energy barrier, while graphene increases it, behaving like cationic systems. According to their reaction barrier reduction efficiency, variation across charge states and systems, rank-ordered catalysts reveal their tunable and wide applications, ranging from water purification to biocompatible antiviral and antibacterial sanitation systems.


Author(s):  
Kelvin Suggs ◽  
Alfred Z Msezane

The fundamental mechanism underlying negative-ion catalysis involves bond-strength breaking in the transition state (TS). Doubly-charged atomic/molecular anions are proposed as novel dynamic tunable catalysts and demonstrated in water oxidation to peroxide. Density Functional Theory TS calculations have found tunable energy activation barrier reduction ranging from 0.030 eV to 2.070eV, with Si2ˉ, Pu2ˉ, Pa2ˉ and Sn2ˉ the best catalysts; the radioactive elements usher in new application opportunities. C602ˉ reduces significantly the standard C60ˉ TS energy barrier while graphene increases it, behaving like cationic systems. Rank-ordered catalysts according to their reaction barrier reduction efficiency, variation across charge states and systems reveal their tunable and wide applications, ranging from water purification to biocompatible anti-viral and anti-bacterial sanitation systems.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 17
Author(s):  
Zineb Felfli ◽  
Alfred Z. Msezane

The robust Regge-pole methodology wherein is fully embedded the essential electron-electron correlation effects and the vital core polarization interaction has been used to explore negative ion formation in the large lanthanide Ho, Er, Tm, Yb, Lu, and Hf atoms through the electron elastic total cross sections (TCSs) calculations. These TCSs are characterized generally by dramatically sharp resonances manifesting ground, metastable, and excited negative ion formation during the collisions, Ramsauer-Townsend minima, and shape resonances. The novelty and generality of the Regge-pole approach is in the extraction of the negative ion binding energies (BEs) of complex heavy systems from the calculated electron TCSs. The extracted anionic BEs from the ground state TCSs for Ho, Er, Tm, Yb, Lu, and Hf atoms are 3.51 eV, 3.53 eV, 3.36 eV, 3.49 eV, 4.09 eV and 1.68 eV, respectively. The TCSs are presented and the extracted from the ground; metastable and excited anionic states BEs are compared with the available measured and/or calculated electron affinities. We conclude with a remark on the existing inconsistencies in the meaning of the electron affinity among the various measurements and/or calculations in the investigated atoms and make a recommendation to resolve the ambiguity.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 84
Author(s):  
Alfred Z. Msezane ◽  
Zineb Felfli

The rigorous Regge-pole method is used to investigate negative-ion formation in actinide atoms through electron elastic total cross sections (TCSs) calculation. The TCSs are found to be characterized generally by negative-ion formations, shape resonances and Ramsauer-Townsend(R-T) minima, and they exhibit both atomic and fullerene molecular behavior near the threshold. Additionally, a polarization-induced metastable cross section with a deep R-T minimum is identified near the threshold in the Am, Cm and Bk TCSs, which flips over to a shape resonance appearing very close to the threshold in the TCSs for Es, No and Lr. We attribute these new manifestations to size effects and orbital collapse significantly impacting the polarization interaction. From the TCSs unambiguous and reliable ground, metastable and excited states negative-ion binding energies (BEs) for Am−, Cm−, Bk−, Es−, No− and Lr− anions formed during the collisions are extracted and compared with existing electron affinities (EAs) of the atoms. The novelty of the Regge-pole approach is in the extraction of the negative-ion BEs from the TCSs. We conclude that the existing theoretical EAs of the actinide atoms and the recently measured EA of Th correspond to excited anionic BEs.


Sign in / Sign up

Export Citation Format

Share Document