shape resonance
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 24)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaochun Gong ◽  
Wenyu Jiang ◽  
Jihong Tong ◽  
Junjie Qiang ◽  
Peifen Lu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Prerna Paliwal ◽  
Alexander Blech ◽  
Christiane P. Koch ◽  
Edvardas Narevicius

AbstractAsymmetric spectral line shapes are a hallmark of interference of a quasi-bound state with a continuum of states. Such line shapes are well known for multichannel systems, for example, in photoionization or Feshbach resonances in molecular scattering. On the other hand, in resonant single channel scattering, the signature of such interference may disappear due to the orthogonality of partial waves. Here, we show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles also in a single channel shape resonance. We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules with detection angle, in excellent agreement with theoretical predictions from full quantum scattering calculations. Using a model description for the partial wave interference, we can disentangle the resonant and background contributions and extract the relative phase responsible for the characteristic Fano-like profiles from our experimental measurements.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. Holzmeier ◽  
J. Joseph ◽  
J. C. Houver ◽  
M. Lebech ◽  
D. Dowek ◽  
...  

AbstractCharacterizing time delays in molecular photoionization as a function of the ejected electron emission direction relative to the orientation of the molecule and the light polarization axis provides unprecedented insights into the attosecond dynamics induced by extreme ultraviolet or X-ray one-photon absorption, including the role of electronic correlation and continuum resonant states. Here, we report completely resolved experimental and computational angular dependence of single-photon ionization delays in NO molecules across a shape resonance, relying on synchrotron radiation and time-independent ab initio calculations. The angle-dependent time delay variations of few hundreds of attoseconds, resulting from the interference of the resonant and non-resonant contributions to the dynamics of the ejected electron, are well described using a multichannel Fano model where the time delay of the resonant component is angle-independent. Comparing these results with the same resonance computed in e-NO+ scattering highlights the connection of photoionization delays with Wigner scattering time delays.


2021 ◽  
pp. 111432
Author(s):  
Murilo O. Silva ◽  
Giseli M. Moreira ◽  
Márcio H.F. Bettega ◽  
Sergio d’Almeida Sanchez
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Rist ◽  
Kim Klyssek ◽  
Nikolay M. Novikovskiy ◽  
Max Kircher ◽  
Isabel Vela-Pérez ◽  
...  

AbstractHow long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion’s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons’ emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 84
Author(s):  
Alfred Z. Msezane ◽  
Zineb Felfli

The rigorous Regge-pole method is used to investigate negative-ion formation in actinide atoms through electron elastic total cross sections (TCSs) calculation. The TCSs are found to be characterized generally by negative-ion formations, shape resonances and Ramsauer-Townsend(R-T) minima, and they exhibit both atomic and fullerene molecular behavior near the threshold. Additionally, a polarization-induced metastable cross section with a deep R-T minimum is identified near the threshold in the Am, Cm and Bk TCSs, which flips over to a shape resonance appearing very close to the threshold in the TCSs for Es, No and Lr. We attribute these new manifestations to size effects and orbital collapse significantly impacting the polarization interaction. From the TCSs unambiguous and reliable ground, metastable and excited states negative-ion binding energies (BEs) for Am−, Cm−, Bk−, Es−, No− and Lr− anions formed during the collisions are extracted and compared with existing electron affinities (EAs) of the atoms. The novelty of the Regge-pole approach is in the extraction of the negative-ion BEs from the TCSs. We conclude that the existing theoretical EAs of the actinide atoms and the recently measured EA of Th correspond to excited anionic BEs.


Author(s):  
V. Loriot ◽  
A. Marciniak ◽  
S. Nandi ◽  
G. Karras ◽  
M. Herve ◽  
...  

2021 ◽  
Author(s):  
Haowen Zhou ◽  
William Perreault ◽  
Nandini Mukherjee ◽  
Richard Zare

Abstract The dynamics of a resonant oriented scattering process dominated by a single partial wave provide the most sensitive probe of the long-range anisotropic forces important to chemical reactions. Here, we control the collision temperature and geometry to probe the dynamics of the cold (<2 K) rotationally inelastic scattering of a pair of optically state-prepared D2 molecules. The collision temperature is manipulated by combining the strobing action of laser state preparation and detection with the velocity dispersion of the molecular beam. When the bond axes are aligned parallel to the collision velocity, the scattering rate drops by nearly an order of magnitude when collision energies >1 K are removed, demonstrating a clear geometry-dependent resonance. Using partial wave analysis of the measured scattering angular distribution, we determine that an l = 2 shape resonance originates from the collisions between a pair of aligned D2 molecules. Our experiment illustrates the strong anisotropy of the long-range quadrupole-quadrupole interaction that controls the dynamic resonance for diatom-diatom collisions.


2021 ◽  
Vol 154 (10) ◽  
pp. 104309
Author(s):  
Haowen Zhou ◽  
William E. Perreault ◽  
Nandini Mukherjee ◽  
Richard N. Zare

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles-Emmanuel Dutoit ◽  
Mingxue Tang ◽  
Didier Gourier ◽  
Jean-Marie Tarascon ◽  
Hervé Vezin ◽  
...  

AbstractMonitoring the formation of dendrites or filaments of lithium is of paramount importance for Li-based battery technologies, hence the intense activities in designing in situ techniques to visualize their growth. Herein we report the benefit of correlating in situ electron paramagnetic resonance (EPR) spectroscopy and EPR imaging to analyze the morphology and location of metallic lithium in a symmetric Li/LiPF6/Li electrochemical cell during polarization. We exploit the variations in shape, resonance field and amplitude of the EPR spectra to follow, operando, the nucleation of sub-micrometric Li particles (narrow and symmetrical signal) that conjointly occurs with the fragmentation of bulk Li on the opposite electrode (asymmetrical signal). Moreover, in situ EPR correlated spectroscopy and imaging (spectral-spatial EPR imaging) allows the identification (spectral) and localization (spatial) of the sub-micrometric Li particles created by plating (deposition) or stripping (altered bulk Li surface). We finally demonstrate the possibility to visualize, via in situ EPR imaging, dendrites formed through the separator in the whole cell. Such a technique could be of great help in mastering the Li-electrolyte interface issues that plague the development of solid-state batteries.


Sign in / Sign up

Export Citation Format

Share Document