scholarly journals Characterization of AMBN I and II Isoforms and Study of Their Ca2+-Binding Properties

2020 ◽  
Vol 21 (23) ◽  
pp. 9293
Author(s):  
Veronika Vetyskova ◽  
Monika Zouharova ◽  
Lucie Bednarova ◽  
Ondřej Vaněk ◽  
Petra Sázelová ◽  
...  

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel—the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN—its oligomerization ability—is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.

Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. 825-829 ◽  
Author(s):  
Tae Hun Kim ◽  
Brian Tsang ◽  
Robert M. Vernon ◽  
Nahum Sonenberg ◽  
Lewis E. Kay ◽  
...  

Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co–phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.


2017 ◽  
Author(s):  
Skylar X. Kim ◽  
Gamze Çamdere ◽  
Xuchen Hu ◽  
Douglas Koshland ◽  
Hugo Tapia

ABSTRACTAnhydrobiotes are rare microbes, plants and animals that tolerate severe water loss. Understanding the molecular basis for their desiccation tolerance may provide novel insights into stress biology and critical tools for engineering drought-tolerant crops. Using the anhydrobiote, budding yeast, we show that trehalose and Hsp12, a small intrinsically disordered protein (sIDP) of the hydrophilin family, synergize to mitigate completely the inviability caused by the lethal stresses of desiccation. We show that these two molecules help to stabilize the activity and prevent aggregation of model proteins both in vivo and in vitro. We also identify a novel role for Hsp12 as a membrane remodeler, a protective feature not shared by another yeast hydrophilin, suggesting that sIDPs have distinct biological functions.


2020 ◽  
Vol 432 (9) ◽  
pp. 3093-3111 ◽  
Author(s):  
Borja Mateos ◽  
Clara Conrad-Billroth ◽  
Marco Schiavina ◽  
Andreas Beier ◽  
Georg Kontaxis ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2129 ◽  
Author(s):  
Tao Zhang ◽  
Jennifer Loschwitz ◽  
Birgit Strodel ◽  
Luitgard Nagel-Steger ◽  
Dieter Willbold

Amyloid-β peptide (Aβ) is an intrinsically disordered protein (IDP) associated with Alzheimer’s disease. The structural flexibility and aggregation propensity of Aβ pose major challenges for elucidating the interaction between Aβ monomers and ligands. All-D-peptides consisting solely of D-enantiomeric amino acid residues are interesting drug candidates that combine high binding specificity with high metabolic stability. Here we characterized the interaction between the 12-residue all-D-peptide D3 and Aβ42 monomers, and how the interaction influences Aβ42 aggregation. We demonstrate for the first time that D3 binds to Aβ42 monomers with submicromolar affinities. These two highly unstructured molecules are able to form complexes with 1:1 and other stoichiometries. Further, D3 at substoichiometric concentrations effectively slows down the β-sheet formation and Aβ42 fibrillation by modulating the nucleation process. The study provides new insights into the molecular mechanism of how D3 affects Aβ assemblies and contributes to our knowledge on the interaction between two IDPs.


2012 ◽  
Vol 102 (3) ◽  
pp. 634a-635a
Author(s):  
Hsueh-Liang Chu ◽  
Tsai-Mu Cheng ◽  
Hsing-Yuan Li ◽  
Chia-Ching Chang

2017 ◽  
Vol 121 (41) ◽  
pp. 9572-9582 ◽  
Author(s):  
Mattia Bernetti ◽  
Matteo Masetti ◽  
Fabio Pietrucci ◽  
Martin Blackledge ◽  
Malene Ringkjobing Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document