scholarly journals In Vivo Electrophysiology of Peptidergic Neurons in Deep Layers of the Lumbar Spinal Cord after Optogenetic Stimulation of Hypothalamic Paraventricular Oxytocin Neurons in Rats

2021 ◽  
Vol 22 (7) ◽  
pp. 3400
Author(s):  
Daisuke Uta ◽  
Takumi Oti ◽  
Tatsuya Sakamoto ◽  
Hirotaka Sakamoto

The spinal ejaculation generator (SEG) is located in the central gray (lamina X) of the rat lumbar spinal cord and plays a pivotal role in the ejaculatory reflex. We recently reported that SEG neurons express the oxytocin receptor and are activated by oxytocin projections from the paraventricular nucleus of hypothalamus (PVH). However, it is unknown whether the SEG responds to oxytocin in vivo. In this study, we analyzed the characteristics of the brain–spinal cord neural circuit that controls male sexual function using a newly developed in vivo electrophysiological technique. Optogenetic stimulation of the PVH of rats expressing channel rhodopsin under the oxytocin receptor promoter increased the spontaneous firing of most lamina X SEG neurons. This is the first demonstration of the in vivo electrical response from the deeper (lamina X) neurons in the spinal cord. Furthermore, we succeeded in the in vivo whole-cell recordings of lamina X neurons. In vivo whole-cell recordings may reveal the features of lamina X SEG neurons, including differences in neurotransmitters and response to stimulation. Taken together, these results suggest that in vivo electrophysiological stimulation can elucidate the neurophysiological response of a variety of spinal neurons during male sexual behavior.

2009 ◽  
Vol 102 (3) ◽  
pp. 1560-1576 ◽  
Author(s):  
Brian R. Noga ◽  
Dawn M. G. Johnson ◽  
Mirta I. Riesgo ◽  
Alberto Pinzon

Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT7/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80–100%) of locomotor cells, which were most abundant in lumbar segments L3–7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7–L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5–L7 segments (>90%) and decreased rostrally (to ∼50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60–80 and 35–80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT7/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.


2007 ◽  
Vol 35 (06) ◽  
pp. 987-993 ◽  
Author(s):  
Byeol-Rim Kang ◽  
Chang-Beohm Ahn ◽  
Byung-Tae Choi

We investigated whether the 2 Hz electroacupuncture (EA) analgesia is associated with phosphorylation of N-methyl-D-aspartate receptor (NMDAR) NR-1 subunits and NMDAR antagonism in the lumbar spinal cord of rats. EA stimulation produced an increase of serine phosphorylation of NMDAR NR-1 subunits in the spinal cord as compared with normal conditions. However, the intrathecal injection of NMDAR antagonist D-2-amino-5-phosphonopentanoic acid significantly prevented serine phosphorylation of NMDAR NR-1 subunits induced by EA stimulation in the dorsal horn of spinal cord. These results indicate that EA analgesia by stimulation of peripheral nerves may be involved in an increase of NR-1 serine phosphorylation in the dorsal horn of the spinal cord.


2020 ◽  
Vol 1 (2) ◽  
pp. 108-114
Author(s):  
Tatyana R. Moshonkina ◽  
Natalia A. Scherbakova ◽  
Sergey A. Moiseev ◽  
Arina V. Minyaeva ◽  
Yuri P. Gerasimenko

2003 ◽  
Vol 90 (6) ◽  
pp. 3617-3624 ◽  
Author(s):  
Jason J. Kuo ◽  
Robert H. Lee ◽  
Michael D. Johnson ◽  
Heather M. Heckman ◽  
C. J. Heckman

Synaptic integration in vivo often involves activation of many afferent inputs whose firing patterns modulate over time. In spinal motoneurons, sustained excitatory inputs undergo enormous enhancement due to persistent inward currents (PICs) that are generated primarily in the dendrites and are dependent on monoaminergic neuromodulatory input from the brain stem to the spinal cord. We measured the interaction between dendritic PICs and inhibition generated by tonic electrical stimulation of nerves to antagonist muscles during voltage clamp in motoneurons in the lumbar spinal cord of the cat. Separate samples of cells were obtained for two different states of monoaminergic input: standard (provided by the decerebrate preparation, which has tonic activity in monoaminergic axons) and minimal (the chloralose anesthetized preparation, which lacks tonic monoaminergic input). In the standard state, steady inhibition that increased the input conductance of the motoneurons by an average of 38% reduced the PIC by 69%. The range of this reduction, from <10% to >100%, was proportional to the magnitude of the applied inhibition. Thus nearly linear integration of synaptic inhibition may occur in these highly active dendrites. In the minimal state, PICs were much smaller, being approximately equal to inhibition-suppressed PICs in the standard state. Inhibition did not further reduce these already small PICs. Overall, these results demonstrate that inhibition from local spinal circuits can oppose the facilitation of dendritic PICs by descending monoaminergic inputs. As a result, local inhibition may also suppress active dendritic integration of excitatory inputs.


1979 ◽  
Vol 47 (5) ◽  
pp. 1066-1073 ◽  
Author(s):  
S. Levine

Previous workers have demonstrated that hindlimb receptors can mediate some portion of the increase in VE elicited by 2,4-dinitrophenol (DNP). Liang and Hood have recently demonstrated that these hindlimb receptors communicate with the respiratory center via afferent pathways of the lumbar spinal cord. Accordingly, to determine the quantitative contribution of these hindlimb receptors to increases in VE elicited by DNP (4 mg/kg), we compared two groups of animals with respect to ventilatory, metabolic, and thermal responses elicited by this drug. Group I animals underwent complete transection of the spinal cord at the first lumbar level, whereas the spinal cord in Group II animals remained intact. Our results indicate that Group I and Group II animals did not differ with respect to increases in VE, VO2, and rectal temperature elicited by DNP. These results suggest that hindlimb receptors do not play an obligatory role in mediating increases in VE elicited by DNP. Therefore, these observations raise the possibility that multiple afferent pathways may exist for stimulation of VE by DNP.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Rachael L. Bosma ◽  
Patrick W. Stroman

The aim of this study was to characterizein vivomeasurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (averageFA=0.69, averageMD=0.93×10−3 mm2/s) and grey matter (averageFA=0.44, averageMD=1.8×10−3 mm2/s) were relatively consistent along the length of the cord.


Sign in / Sign up

Export Citation Format

Share Document