scholarly journals Solvent-Induced Formation of Novel Ni(II) Complexes Derived from Bis-Thiosemicarbazone Ligand: An Insight from Experimental and Theoretical Investigations

2021 ◽  
Vol 22 (10) ◽  
pp. 5337
Author(s):  
Ghodrat Mahmoudi ◽  
Maria G. Babashkina ◽  
Waldemar Maniukiewicz ◽  
Farhad Akbari Afkhami ◽  
Bharath Babu Nunna ◽  
...  

In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex [NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordination geometry around metal centers in all the three crystallographically independent molecules of 1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of LI with methanol upon coordination to the metal center under synthetic conditions. In the structure of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center. The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both structures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including predominantly N–H∙∙∙S and N–H∙∙∙O hydrogen bonds in 1 and 2, respectively; they are further augmented by less typical C–H∙∙∙X (where X = S, N, O, π), CH∙∙∙HC, π∙∙∙π stacking and the most striking, attractive long-range intermolecular C–H∙∙∙Ni preagostic interactions. The latter are found to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C–H∙∙∙S interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane atoms, demonstrating a very weak σ-metalloaromatic character.

Author(s):  
Olivia Long ◽  
Gopalakrishnan Sai Gautam ◽  
Emily Ann Carter

We benchmark calculated interlayer spacings, average topotactic voltages, thermodynamic stabilities, and band gaps in layered lithium transition-metal oxides (TMOs) and their de-lithiated counterparts, which are used in lithium-ion batteries as...


Author(s):  
Jesús Jara-Cortés ◽  
Edith Leal-Sánchez ◽  
Evelio Francisco ◽  
Jose A. Perez-Pimienta ◽  
Ángel Martín Pendás ◽  
...  

We present an implementation of the interacting quantum atoms energy decomposition scheme (IQA) with the complete active space second-order perturbation theory (CASPT2). This combination yields a real-space interpretation tool with...


2014 ◽  
Vol 119 (29) ◽  
pp. 9056-9067 ◽  
Author(s):  
Marwa H. Farag ◽  
Manuel F. Ruiz-López ◽  
Adolfo Bastida ◽  
Gérald Monard ◽  
Francesca Ingrosso

2007 ◽  
Vol 127 (15) ◽  
pp. 154109 ◽  
Author(s):  
Jong-Won Song ◽  
Seiken Tokura ◽  
Takeshi Sato ◽  
Mark A. Watson ◽  
Kimihiko Hirao

1984 ◽  
Vol 64 (4) ◽  
pp. 259-263 ◽  
Author(s):  
F. Bernardi ◽  
A. Bottoni ◽  
M. A. Robb

2013 ◽  
Vol 69 (10) ◽  
pp. 1120-1123 ◽  
Author(s):  
Dennis H. Mayo ◽  
Yang Peng ◽  
Peter Zavalij ◽  
Kit H. Bowen ◽  
Bryan W. Eichhorn

The disproportionation of AlCl(THF)n(THF is tetrahydrofuran) in the presence of lithium amidinate species gives aluminium(III) amidinate complexes with partial or full chloride substitution. Three aluminium amidinate complexes formed during the reaction between aluminium monochloride and lithium amidinates are presented. The homoleptic complex tris(N,N′-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)3] or Al{PhC[N(i-Pr)]2}3, (I), crystallizes from the same solution as the heteroleptic complex chloridobis(N,N′-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)2Cl] or Al{PhC[N(i-Pr)]2}2Cl, (II). Both have two crystallographically independent molecules per asymmetric unit (Z′ = 2) and (I) shows disorder in four of its N(i-Pr) groups. Changing the ligand substituent to the bulkier cyclohexyl allows the isolation of the partial THF solvate chloridobis(N,N′-dicyclohexylbenzimidamido)aluminium(III) tetrahydrofuran 0.675-solvate, [Al(C19H27N2)2Cl]·0.675C4H8O or Al[PhC(NCy)2]2Cl·0.675THF, (III). Despite having a twofold rotation axis running through its Al and Cl atoms, (III) has a similar molecular structure to that of (II).


Sign in / Sign up

Export Citation Format

Share Document