hydration effect
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 27)

H-INDEX

17
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6969
Author(s):  
Kenia Melchor-Rodríguez ◽  
Chayan Carmenate-Rodríguez ◽  
Anthuan Ferino-Pérez ◽  
Sarra Gaspard ◽  
Ulises J. Jáuregui-Haza

The influence of nitrogen-containing surface groups (SGs) onto activated carbon (AC) over the adsorption of chlordecone (CLD) and β-hexachlorocyclohexane (β-HCH) was characterized by a molecular modelling study, considering pH (single protonated SGs) and hydration effect (up to three water molecules). The interactions of both pollutants with amines and pyridine as basic SGs of AC were studied, applying the multiple minima hypersurface (MMH) methodology and using PM7 semiempirical Hamiltonian. Representative structures from MMH were reoptimized using the M06-2X density functional theory. The quantum theory of atoms in molecules (QTAIM) was used to characterize the interaction types in order understanding the adsorption process. A favorable association of both pesticides with the amines and pyridine SGs onto AC was observed at all pH ranges, both in the absence and presence of water molecules. However, a greater association of both pollutants with the primary amine was found under an acidic pH condition. QTAIM results show that the interactions of CLD and β-HCH with the SGs onto AC are governed by Cl···C interactions of chlorine atoms of both pesticides with the graphitic surface. Electrostatic interactions (H-bonds) were observed when water molecules were added to the systems. A physisorption mechanism is suggested for CLD and β-HCH adsorption on nitrogen-containing SGs of AC.


Author(s):  
Yi Ding ◽  
Xiaolong Yu ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1214
Author(s):  
Shi Zhou ◽  
Yuebo Wang ◽  
Henry Teng

Carbonate mineralization is reasonably well-understood in the Ca–CO2–H2O system but continuously poses difficulties to grasp when Mg is present. One of the outstanding questions is the lack of success in dolomite MgCa(CO3)2 crystallization at atmospheric conditions. The conventional view holds that hydration retards the reactivity of Mg2+ and is supported by solvation shell chemistry. This theory however is at odds with the easy formation of norsethite MgBa(CO3)2, a structural analogue of dolomite, leading to the premise that crystal or molecular structural constrains may also be at play. The present study represents our attempts to evaluate the separate contributions of the two barriers. Crystallization in the Mg–Ba–CO2 system was examined in a non-aqueous environment and in H2O to isolate the effect of hydration by determining the minimal relative abundance of Mg required for norsethite formation. The results, showing an increase from 1:5 to 6:4 in the solution Mg/Ba ratio, represented a ~88% reduction in Mg2+ reactivity, presumably due to the hydration effect. Further analyses in the context of transition state theory indicated that the decreased Mg2+ reactivity in aqueous solutions was equivalent to an approximately 5 kJ/mol energy penalty for the formation of the activated complex. Assuming the inability of dolomite to crystallizes in aqueous solutions originates from the ~40 kJ/mol higher (relative to norsethite) Gibbs energy of formation for the activated complex, a hydration effect was estimated to account for ~12% of the energy barrier. The analyses present here may be simplistic but nevertheless consistent with the available thermodynamic data that show the activated complex of dolomite crystallization reaction is entropically favored in comparison with that of norsethite formation but is significantly less stable due to the weak chemical bonding state.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 777
Author(s):  
Jiaxuan Zheng ◽  
Yongjun Jian

Space electroosmotic thrusters (EOTs) are theoretically investigated in a soft charged nanochannel with a dense polyelectrolyte layer (PEL), which is considered to be more realistic than a low-density PEL. When the PEL is dense, its permittivity is smaller than the one of the electrolyte solution layer, leading to rearrangement of ions in the channel, which is denoted as the ion partitioning effect. It is noted that fluid viscosity becomes high within the PEL owing to the hydration effect. An analytical solution for electroosmotic velocity through the channel is obtained by utilizing the Debye–Hückel linearization assumption. Based on the fluid motion, thruster performances, including thrust, specific impulse, thrust-to-power ratio, and efficiency, are calculated. The ion partitioning effect leads to enhancement of the thruster velocity, while increase of the dynamic viscosity inside the PEL reduces the flow rate of the fluid. Therefore, these performances are further impacted by the dense soft material, which are discussed in detail. Moreover, changes or improvements of the thruster performances from the dense PEL to the weak PEL are presented and compared, and distributions of various energy items are also provided in this study. There is a good result whereby the increase in electric double layer thickness promotes the development of thruster performances. Ultimately, the simulated EOTs produce thrust of about 0 to 20 μN and achieve thruster efficiency of 90.40%, while maintaining an appropriate thrust–power ratio of about 1.53 mN/W by optimizing all design parameters.


2021 ◽  
Vol 860 ◽  
pp. 158452
Author(s):  
A.R. Gilev ◽  
E.A. Kiselev ◽  
D.A. Malyshkin ◽  
K.S. Sukhanov ◽  
V.A. Cherepanov

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Tianqi Qi ◽  
Wei Zhou ◽  
Xinghong Liu ◽  
Qiao Wang ◽  
Sifan Zhang

Efficient and accurate cement hydration simulation is an important issue for predicting and analyzing concrete’s performance evolution. A large number of models have been proposed to describe cement hydration. Some models can simulate the test results with high accuracy by constructing reasonable functions, but they are based on mathematical regression and lack of physical background and prediction ability. Other models, such as the famous HYMOSTRUC model and CEMHYD3D model, can predict the hydration rate and microstructure evolution of cement based on its initial microstructure. However, this kind of prediction model also has some limitations, such as the inability to fully consider the properties of cement slurry, or being too complicated for use in finite element analysis (FEA). In this study, the hydration mechanisms of the main minerals in Portland cement (PC) are expounded, and the corresponding hydration model is built. Firstly, a modified particle hydration model of tricalcium silicate (C3S) and alite is proposed based on the moisture diffusion theory and the calcium silicate hydrate (C-S-H) barrier layer hypothesis, which can predict the hydration degree of C3S and alite throughout the age. Taking the hydration model of C3S as a reference, the hydration model of dicalcium silicate (C2S) is established, and the synergistic hydration effect of C3S and C2S is calibrated by analyzing the published test results. The hydration model of tricalcium aluminate(C3A)-gypsum system is then designed by combining the theory of dissolution and diffusion. This model can reflect the hydration characteristics of C3A in different stages, and quantify the response of the hydration process of C3A to different gypsum content, water–cement ratio, and particle size distribution. Finally, several correction coefficients are introduced into the hydration model of the main mineral, to consider the synergistic hydration effect among the minerals to some extent and realize the prediction of the hydration of PC.


2021 ◽  
Author(s):  
Lukang Ji ◽  
Yiran Liu ◽  
Zujian Li ◽  
Guanghui Ouyang ◽  
Minghua Liu

The chiral exciton couplings within a Y-shaped amphiphilic glutamide-cyanostilbene (GCS) could be significantly biased by solvent polarity and hydration effect, which led to sign inversion of both circular dichroism and...


Sign in / Sign up

Export Citation Format

Share Document