scholarly journals Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation

2021 ◽  
Vol 22 (13) ◽  
pp. 7124
Author(s):  
Guanqing Liu ◽  
Tao Zhang

Oligonucleotides fluorescence in situ hybridization (Oligo-FISH) is an emerging technology and is an important tool in research areas such as detection of chromosome variation, identification of allopolyploid, and deciphering of three-dimensional (3D) genome structures. Based on the demand for highly efficient oligo probes for oligo-FISH experiments, increasing numbers of tools have been developed for probe design in recent years. Obsolete oligonucleotide design tools have been adapted for oligo-FISH probe design because of their similar considerations. With the development of DNA sequencing and large-scale synthesis, novel tools have been designed to increase the specificity of designed oligo probes and enable genome-scale oligo probe design, which has greatly improved the application of single copy oligo-FISH. Despite this, few studies have introduced the development of the oligo-FISH probe design tools and their application in FISH experiments systematically. Besides, a comprehensive comparison and evaluation is lacking for the available tools. In this review, we provide an overview of the oligo-FISH probe design process, summarize the development and application of the available tools, evaluate several state-of-art tools, and eventually provide guidance for single copy oligo-FISH probe design.

2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

2010 ◽  
Vol 207 (9) ◽  
pp. 1835-1841 ◽  
Author(s):  
Han-Yu Shih ◽  
Michael S. Krangel

Studies have suggested that antigen receptor loci adopt contracted conformations to promote long-distance interactions between gene segments during V(D)J recombination. The Tcra/Tcrd locus is unique because it undergoes highly divergent Tcrd and Tcra recombination programs in CD4−CD8− double negative (DN) and CD4+CD8+ double positive (DP) thymocytes, respectively. Using three-dimensional fluorescence in situ hybridization, we asked whether these divergent recombination programs are supported by distinct conformational states of the Tcra/Tcrd locus. We found that the 3′ portion of the locus is contracted in DN and DP thymocytes but not in B cells. Remarkably, the 5′ portion of the locus is contracted in DN thymocytes but is decontracted in DP thymocytes. We propose that the fully contracted conformation in DN thymocytes allows Tcrd rearrangements involving Vδ gene segments distributed over 1 Mb, whereas the unique 3′-contracted, 5′-decontracted conformation in DP thymocytes biases initial Tcra rearrangements to the most 3′ of the available Vα gene segments. This would maintain a large pool of distal 5′ Vα gene segments for subsequent rounds of recombination. Thus, distinct contracted conformations of the Tcra/Tcrd locus may facilitate a transition from a Tcrd to a Tcra mode of recombination during thymocyte development.


2001 ◽  
Vol 37 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Pushpa Kharb ◽  
Jinjiang Dong ◽  
M. N. Islam-Faridi ◽  
David M. Stelly ◽  
Timothy C. Hall

1996 ◽  
Vol 44 (5) ◽  
pp. 525-529 ◽  
Author(s):  
J Wiegant ◽  
N Verwoerd ◽  
S Mascheretti ◽  
M Bolk ◽  
H J Tanke ◽  
...  

Synthesis of fluorochrome-modified deoxyribonucleotides has been carried out mostly by linking the fluorochrome molecule to the C-5 position of dUTP via an allylamine spacer, similar to the modification of allylamine-dUTP with the haptens biotin and digoxigenin. Recently, a new series of fluorescent nucleotides has been prepared by using an alkynyl bridge between the uracil moiety and the fluorochrome. Here we report the qualitative and quantitative analysis of fluorescence in situ hybridization results obtained on interphase cells and chromosomes with a variety of highly repetitive and single-copy DNA probes that were modified by nick translation with such alkynyl dUTPs. A qualitative comparison was made of the alkynyl dUTPs conjugated to the fluorochromes fluorescein, the cyanine dye Cy3, tetramethylrhodamine, Lissamine and Texas Red. With the exception of tetramethylrhodamine, all fluorochromes performed satisfactorily. The cyanine dye Cy3 provided the highest sensitivity, i.e., cosmid and YAC probes could easily be visualized by conventional fluorescence microscopy. In a quantitative assay, different nick translation conditions were tested using a human chromosome 1 satellite III probe (pUC1.77) and alkynyl dUTPs labeled with fluorescein and Cy3. Using these two nucleotides, FISH signal intensities on interphase nuclei from human lymphocytes were quantitated by digital imaging microscopy. The strongest signals were obtained when during nick translation the ratio between dTTP and fluorescein-dUTP or Cy3-dUTP was 1:5.


Sign in / Sign up

Export Citation Format

Share Document