scholarly journals Oxidative Stress, Mutations and Chromosomal Aberrations Induced by In Vitro and In Vivo Exposure to Furan

2021 ◽  
Vol 22 (18) ◽  
pp. 9687
Author(s):  
Maria Teresa Russo ◽  
Gabriele De Luca ◽  
Nieves Palma ◽  
Paola Leopardi ◽  
Paolo Degan ◽  
...  

Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1−/− mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.

2009 ◽  
Vol 20 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Ulf R. Klein ◽  
Markus Haindl ◽  
Erich A. Nigg ◽  
Stefan Muller

The ubiquitin-like SUMO system controls cellular key functions, and several lines of evidence point to a critical role of SUMO for mitotic progression. However, in mammalian cells mitotic substrates of sumoylation and the regulatory components involved are not well defined. Here, we identify Borealin, a component of the chromosomal passenger complex (CPC), as a mitotic target of SUMO. The CPC, which additionally comprises INCENP, Survivin, and Aurora B, regulates key mitotic events, including chromosome congression, the spindle assembly checkpoint, and cytokinesis. We show that Borealin is preferentially modified by SUMO2/3 and demonstrate that the modification is dynamically regulated during mitotic progression, peaking in early mitosis. Intriguingly, the SUMO ligase RanBP2 interacts with the CPC, stimulates SUMO modification of Borealin in vitro, and is required for its modification in vivo. Moreover, the SUMO isopeptidase SENP3 is a specific interaction partner of Borealin and catalyzes the removal of SUMO2/3 from Borealin. These data thus delineate a mitotic SUMO2/3 conjugation–deconjugation cycle of Borealin and further assign a regulatory function of RanBP2 and SENP3 in the mitotic SUMO pathway.


1988 ◽  
Vol 208 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Anna Montaldi ◽  
Roberta Mariot ◽  
Mauro Zordan ◽  
Maurizio Palcologo ◽  
Angelo Gino Levis

1988 ◽  
Vol 204 (4) ◽  
pp. 645-648 ◽  
Author(s):  
R. Meschini ◽  
M.T. Quaranta ◽  
M. Fiore ◽  
C. Polcaro ◽  
E. Possagno ◽  
...  

2007 ◽  
Vol 26 (11) ◽  
pp. 899-906
Author(s):  
Melissa G. Armelini ◽  
Keronninn M. Lima-Bessa ◽  
Maria Carolina N. Marchetto ◽  
Alysson R. Muotri ◽  
Vanessa Chiganças ◽  
...  

Recombinant adenoviral vectors provide efficient means for gene transduction in mammalian cells in vitro and in vivo. We are currently using these vectors to transduce DNA repair genes into repair deficient cells, derived from xeroderma pigmentosum (XP) patients. XP is an autosomal syndrome characterized by a high frequency of skin tumors, especially in areas exposed to sunlight, and, occasionally, developmental and neurological abnormalities. XP cells are deficient in nucleotide excision repair (affecting one of the seven known XP genes, xpa to xpg) or in DNA replication of DNA lesions (affecting DNA polymerase eta, xpv). The adenovirus approach allows the investigation of different consequences of DNA lesions in cell genomes. Adenoviral vectors carrying several xp and photolyases genes have been constructed and successfully tested in cell culture systems and in vivo directly in the skin of knockout model mice. This review summarizes these recent data and proposes the use of recombinant adenoviruses as tools to investigate the mechanisms that provide protection against DNA damage in human cells, as well as to better understand the higher predisposition of XP patients to cancer. Human & Experimental Toxicology (2007) 26, 899—906


2003 ◽  
Vol 22 (3) ◽  
pp. 233-251 ◽  
Author(s):  
Charles E. Healy ◽  
Larry D. Kier ◽  
Fabrice Broeckaert ◽  
Mark A. Martens

Triallate is a selective herbicidal chemical used for control of wild oats in wheat. It has an extensive genotoxicity database that includes a variety of in vitro and in vivo studies. The chemical has produced mixed results in in vitro assay systems. It was genotoxic in bacterial mutation Ames assays, predominantly in Salmonella typhimurium strains TA100 and TA1535 in the presence of S9. Weaker responses have been observed in TA100 and TA1535 in the absence of S9. Mixed results have been observed in strain TA98, whereas no genotoxicity has been observed in strains TA1537 and TA1538. The presence and absence of S9 and its source seem to play a role in the bacterial response to the chemical. There have also been conflicting results in other test systems using other bacterial genera, yeast, and mammalian cells. Chromosome effects assays (sister-chromatid exchange and cytogenetics assays) have produced mixed results with S9 but no genotoxicity without S9. Triallate has not produced any genotoxicity in in vitro DNA damage or unscheduled DNA synthesis assays using EUE cells, human lymphocytes, and rat and mouse hepatocytes. In a series of in vivo genotoxicity assays (cytogenetics, micronucleus, dominant lethal, and unscheduled DNA synthesis), there has been no indication of any adverse genotoxic effect. Metabolism data indicate that the probable explanation for the differences observed between the in vitro studies with S9 and without S9 and between the in vitro and the in vivo studies is the production of a mutagenic intermediate in vitro at high doses of triallate is expected to be at most only transiently present in in vivo studies. The weight of evidence strongly suggests that triallate is not likely to exert mutagenic activity in vivo due to toxicokinetics and metabolic processes leading to detoxification.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1284
Author(s):  
Anzhela V. Pavlova ◽  
Elena A. Kubareva ◽  
Mayya V. Monakhova ◽  
Maria I. Zvereva ◽  
Nina G. Dolinnaya

DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.


2005 ◽  
Vol 280 (23) ◽  
pp. 22029-22035 ◽  
Author(s):  
Amy C. Raymond ◽  
Bart L. Staker ◽  
Alex B. Burgin

Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and tyrosine in vitro. Tdp1 is involved in the repair of DNA lesions created by topoisomerase I, although the in vivo substrate is not known. Here we study the kinetic and binding properties of human Tdp1 (hTdp1) to identify appropriate 3′-phosphotyrosyl DNA substrates. Genetic studies argue that Tdp1 is involved in double and single strand break repair pathways; however, x-ray crystal structures suggest that Tdp1 can only bind single strand DNA. Separate kinetic and binding experiments show that hTdp1 has a preference for single-stranded and blunt-ended duplex substrates over nicked and tailed duplex substrate conformations. Based on these results, we present a new model to explain Tdp1/DNA binding properties. These results suggest that Tdp1 only acts upon double strand breaks in vivo, and the roles of Tdp1 in yeast and mammalian cells are discussed.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Sign in / Sign up

Export Citation Format

Share Document