scholarly journals Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It

2021 ◽  
Vol 22 (24) ◽  
pp. 13335
Author(s):  
Jiayu Zou ◽  
Li Wang ◽  
Hailin Tang ◽  
Xiuxiu Liu ◽  
Fu Peng ◽  
...  

As a main subtype of lung cancer, the current situation of non-small cell lung cancer (NSCLC) remains severe worldwide with a 19% survival rate at 5 years. As the conventional therapy approaches, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, gradually develop into therapy resistance, searching for a novel therapeutic strategy for NSCLC is urgent. Ferroptosis, an iron-dependent programmed necrosis, has now been widely considered as a key factor affecting the tumorigenesis and progression in various cancers. Focusing on its effect in NSCLC, in different situations, ferroptosis can be triggered or restrained. When ferroptosis was induced in NSCLC, it was available to inhibit the tumor progression both in vitro and in vivo. The dominating mechanism was due to a regulation of the classic ferroptosis-repressed GSH-dependent GPX4 signaling pathway instead of other fractional regulating signal axes that regulated ferroptosis via impacting on the ROS, cellular iron levels, etc. In terms of the prevention of ferroptosis in NSCLC, an GSH-independent mechanism was also discovered, interestingly exhibiting the same upstream as the GPX4 signaling. In addition, this review summarizes the progression of ferroptosis in NSCLC and elaborates their association and specific mechanisms through bioinformatics analysis with multiple experimental evidence from different cascades. Finally, this review also points out the possibility of ferroptosis working as a novel strategy for therapy resistance in NSCLC, emphasizing its therapeutic potential.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 1510-1523
Author(s):  
Ying Wang ◽  
Mimi Guo ◽  
Dingmei Lin ◽  
Dajun Liang ◽  
Ling Zhao ◽  
...  

2021 ◽  
Vol 12 (19) ◽  
pp. 2551-2563
Author(s):  
Wei Tian ◽  
Yinping Sun ◽  
Yuping Cheng ◽  
Xiao Ma ◽  
Weina Du ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2938-2954 ◽  
Author(s):  
Jing Shen ◽  
Shoubo Cao ◽  
Xin Sun ◽  
Bo Pan ◽  
Jingyan Cao ◽  
...  

Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nazanin Pirooznia ◽  
Khosrou Abdi ◽  
Davood Beiki ◽  
Farshad Emami ◽  
Seyed Shahriar Arab ◽  
...  

The αvβ3 integrin receptors have high expression on proliferating growing tumor cells of different origins including non-small-cell lung cancer. RGD-containing peptides target the extracellular domain of integrin receptors. This specific targeting makes these short sequences a suitable nominee for theranostic application. DOTA-E(cRGDfK)2 was radiolabeled with 68Ga efficiently. The in vivo and in vitro stability was examined in different buffer systems. Metabolic stability was assessed in mice urine. In vitro specific binding, cellular uptake, and internalization were determined. The tumor-targeting potential of [68Ga]Ga-DOTA-E(cRGDfK)2 in a lung cancer mouse model was studied. Besides, the very early diagnostic potential of the 68Ga-labeled RGD peptide was evaluated. The acquisition and reconstruction of the PET-CT image data were also carried out. Radiochemical and radionuclide purity for [68Ga]Ga-DOTA-E(cRGDfK)2 was >%98 and >%99, respectively. Radiotracer showed high in vivo, in vitro, and metabolic stability which was determined by ITLC. The dissociation constant (Kd) of [68Ga]Ga-DOTA-E(cRGDfK)2 was 15.28 nM. On average, more than 95% of the radioactivity was specific binding (internalized + surface-bound) to A549 cells. Biodistribution data showed that radiolabeled peptides were accumulated significantly in A549 tumor and excreted rapidly by the renal system. Tumor uptake peaks were at 1-hour postinjection for [68Ga]Ga-DOTA-E(cRGDfK)2. The tumor was clearly visualized in all images. [68Ga]Ga-DOTA-E(cRGDfK)2 can be used as a peptide-based imaging agent allowing very early detection of different cancers overexpressing αvβ3 integrin receptors and can be a potential candidate in clinical peptide-based imaging for lung cancer.


2021 ◽  
Author(s):  
Beatrice Parma ◽  
Vignesh Ramesh ◽  
Paradesi Naidu Gollavilli ◽  
Aarif Siddiqui ◽  
Luisa Pinna ◽  
...  

ABSTRACTThe identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. Here, we show HSPD1 (HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients’ prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on OXPHOS and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NCSLC.SignificanceHSPD1 elimination or disruption interferes with NSCLC metabolic activity causing a strong OXPHOS-dependent energetic breakdown, which the cancer cells fail to overcome, highlighting HSPD1 as a potential theranostic marker for improving lung cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document