scholarly journals Nanomechanical Atomic Force Microscopy to Probe Cellular Microplastics Uptake and Distribution

2022 ◽  
Vol 23 (2) ◽  
pp. 806
Author(s):  
Farida Akhatova ◽  
Ilnur Ishmukhametov ◽  
Gölnur Fakhrullina ◽  
Rawil Fakhrullin

The concerns regarding microplastics and nanoplastics pollution stimulate studies on the uptake and biodistribution of these emerging pollutants in vitro. Atomic force microscopy in nanomechanical PeakForce Tapping mode was used here to visualise the uptake and distribution of polystyrene spherical microplastics in human skin fibroblast. Particles down to 500 nm were imaged in whole fixed cells, the nanomechanical characterization allowed for differentiation between internalized and surface attached plastics. This study opens new avenues in microplastics toxicity research.

Langmuir ◽  
1999 ◽  
Vol 15 (25) ◽  
pp. 8569-8573 ◽  
Author(s):  
William E. Farneth ◽  
R. Scott McLean ◽  
John D. Bolt ◽  
Eleni Dokou ◽  
Mark A. Barteau

2001 ◽  
Vol 82 (6) ◽  
pp. 1503-1508 ◽  
Author(s):  
O. I. Kiselyova ◽  
I. V. Yaminsky ◽  
E. M. Karger ◽  
O. Yu. Frolova ◽  
Y. L. Dorokhov ◽  
...  

The structure of complexes formed in vitro by tobacco mosaic virus (TMV)-coded movement protein (MP) with TMV RNA and short (890 nt) synthetic RNA transcripts was visualized by atomic force microscopy on a mica surface. MP molecules were found to be distributed along the chain of RNA and the structure of MP–RNA complexes depended on the molar MP:RNA ratios at which the complexes were formed. A rise in the molar MP:TMV RNA ratio from 20:1 to 60–100:1 resulted in an increase in the density of the MP packaging on TMV RNA and structural conversion of complexes from RNase-sensitive ‘beads-on-a-string’ into a ‘thick string’ form that was partly resistant to RNase. The ‘thick string’-type RNase-resistant complexes were also produced by short synthetic RNA transcripts at different MP:RNA ratios. The ‘thick string’ complexes are suggested to represent clusters of MP molecules cooperatively bound to discrete regions of TMV RNA and separated by protein-free RNA segments.


Hyaluronan ◽  
2002 ◽  
pp. 109-116 ◽  
Author(s):  
Mary K. Cowman ◽  
Min Li ◽  
Ansil Dyal ◽  
Sonoko Kanai

Sign in / Sign up

Export Citation Format

Share Document