scholarly journals Gutenberg Goes Neural: Comparing Features of Dutch Human Translations with Raw Neural Machine Translation Outputs in a Corpus of English Literary Classics

Informatics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 32
Author(s):  
Rebecca Webster ◽  
Margot Fonteyne ◽  
Arda Tezcan ◽  
Lieve Macken ◽  
Joke Daems

Due to the growing success of neural machine translation (NMT), many have started to question its applicability within the field of literary translation. In order to grasp the possibilities of NMT, we studied the output of the neural machine system of Google Translate (GNMT) and DeepL when applied to four classic novels translated from English into Dutch. The quality of the NMT systems is discussed by focusing on manual annotations, and we also employed various metrics in order to get an insight into lexical richness, local cohesion, syntactic, and stylistic difference. Firstly, we discovered that a large proportion of the translated sentences contained errors. We also observed a lower level of lexical richness and local cohesion in the NMTs compared to the human translations. In addition, NMTs are more likely to follow the syntactic structure of a source sentence, whereas human translations can differ. Lastly, the human translations deviate from the machine translations in style.

2019 ◽  
Vol 45 (2) ◽  
pp. 267-292 ◽  
Author(s):  
Akiko Eriguchi ◽  
Kazuma Hashimoto ◽  
Yoshimasa Tsuruoka

Neural machine translation (NMT) has shown great success as a new alternative to the traditional Statistical Machine Translation model in multiple languages. Early NMT models are based on sequence-to-sequence learning that encodes a sequence of source words into a vector space and generates another sequence of target words from the vector. In those NMT models, sentences are simply treated as sequences of words without any internal structure. In this article, we focus on the role of the syntactic structure of source sentences and propose a novel end-to-end syntactic NMT model, which we call a tree-to-sequence NMT model, extending a sequence-to-sequence model with the source-side phrase structure. Our proposed model has an attention mechanism that enables the decoder to generate a translated word while softly aligning it with phrases as well as words of the source sentence. We have empirically compared the proposed model with sequence-to-sequence models in various settings on Chinese-to-Japanese and English-to-Japanese translation tasks. Our experimental results suggest that the use of syntactic structure can be beneficial when the training data set is small, but is not as effective as using a bi-directional encoder. As the size of training data set increases, the benefits of using a syntactic tree tends to diminish.


Author(s):  
Shuangzhi Wu ◽  
Ming Zhou ◽  
Dongdong Zhang

Neural Machine Translation (NMT) based on the encoder-decoder architecture has recently achieved the state-of-the-art performance. Researchers have proven that extending word level attention to phrase level attention by incorporating source-side phrase structure can enhance the attention model and achieve promising improvement. However, word dependencies that can be crucial to correctly understand a source sentence are not always in a consecutive fashion (i.e. phrase structure), sometimes they can be in long distance. Phrase structures are not the best way to explicitly model long distance dependencies. In this paper we propose a simple but effective method to incorporate source-side long distance dependencies into NMT. Our method based on dependency trees enriches each source state with global dependency structures, which can better capture the inherent syntactic structure of source sentences. Experiments on Chinese-English and English-Japanese translation tasks show that our proposed method outperforms state-of-the-art SMT and NMT baselines.


2018 ◽  
Vol 7 (2) ◽  
pp. 240-262 ◽  
Author(s):  
Joss Moorkens ◽  
Antonio Toral ◽  
Sheila Castilho ◽  
Andy Way

Abstract In the context of recent improvements in the quality of machine translation (MT) output and new use cases being found for that output, this article reports on an experiment using statistical and neural MT systems to translate literature. Six professional translators with experience of literary translation produced English-to-Catalan translations under three conditions: translation from scratch, neural MT post-editing, and statistical MT post-editing. They provided feedback before and after the translation via questionnaires and interviews. While all participants prefer to translate from scratch, mostly due to the freedom to be creative without the constraints of segment-level segmentation, those with less experience find the MT suggestions useful.


Author(s):  
Guanhua Chen ◽  
Yun Chen ◽  
Yong Wang ◽  
Victor O.K. Li

Leveraging lexical constraint is extremely significant in domain-specific machine translation and interactive machine translation. Previous studies mainly focus on extending beam search algorithm or augmenting the training corpus by replacing source phrases with the corresponding target translation. These methods either suffer from the heavy computation cost during inference or depend on the quality of the bilingual dictionary pre-specified by user or constructed with statistical machine translation. In response to these problems, we present a conceptually simple and empirically effective data augmentation approach in lexical constrained neural machine translation. Specifically, we make constraint-aware training data by first randomly sampling the phrases of the reference as constraints, and then packing them together into the source sentence with a separation symbol. Extensive experiments on several language pairs demonstrate that our approach achieves superior translation results over the existing systems, improving translation of constrained sentences without hurting the unconstrained ones.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2018 ◽  
Vol 25 (1) ◽  
pp. 171-210
Author(s):  
NILADRI CHATTERJEE ◽  
SUSMITA GUPTA

AbstractFor a given training corpus of parallel sentences, the quality of the output produced by a translation system relies heavily on the underlying similarity measurement criteria. A phrase-based machine translation system derives its output through a generative process using a Phrase Table comprising source and target language phrases. As a consequence, the more effective the Phrase Table is, in terms of its size and the output that may be derived out of it, the better is the expected outcome of the underlying translation system. However, finding the most similar phrase(s) from a given training corpus that can help generate a good quality translation poses a serious challenge. In practice, often there are many parallel phrase entries in a Phrase Table that are either redundant, or do not contribute to the translation results effectively. Identifying these candidate entries and removing them from the Phrase Table will not only reduce the size of the Phrase Table, but should also help in improving the processing speed for generating the translations. The present paper develops a scheme based on syntactic structure and the marker hypothesis (Green 1979, The necessity of syntax markers: two experiments with artificial languages, Journal of Verbal Learning and Behavior) for reducing the size of a Phrase Table, without compromising much on the translation quality of the output, by retaining the non-redundant and meaningful parallel phrases only. The proposed scheme is complemented with an appropriate similarity measurement scheme to achieve maximum efficiency in terms of BLEU scores. Although designed for Hindi to English machine translation, the overall approach is quite general, and is expected to be easily adaptable for other language pairs as well.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


Sign in / Sign up

Export Citation Format

Share Document