scholarly journals Lobesia botrana: A Biological Control Approach with a Biopesticide Based on Entomopathogenic Fungi in the Winter Season in Chile

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Fabiola Altimira ◽  
Nathalia De La Barra ◽  
Paulo Godoy ◽  
Juan Roa ◽  
Sebastián Godoy ◽  
...  

Lobesia botrana (Denis and Shiffermüller) (Lepidoptera: Tortricidae) is one of the main pests that affect the production and export of table grapes in Chile. Because this pest has quarantine status, the fruit must be fumigated with methyl bromide, which reduces the fruit’s export competitiveness in the destination market. In the present study, to help resolve this issue, six native entomopathogenic fungi were identified through multilocus analysis, including three Beauveria pseudobassiana and three Metarhizium robertsii. These fungi were evaluated in the laboratory to control L. botrana in its pupal stage in a silk cocoon and compared against a biological control product. Formulations with additional carbon sources improved the performance of the fungi. The treatments with outstanding performance contained the fungal strains B. pseudobassiana RGM 2184 and M. robertsii RGM 678. These strains were evaluated in the field during the winter season in two different regions of the country; the strains reached maximum efficacies of 80% and 88%, respectively, at 21 days post first application. Therefore, entomopathogenic fungi can contribute to reducing pupal populations in winter, thereby decreasing the moth population in spring–summer.

2019 ◽  
Author(s):  
Fabiola Altimira ◽  
Nathalia De La Barra ◽  
Patricia Rebufel ◽  
Sylvana Soto ◽  
Rodrigo Soto ◽  
...  

Abstract Objective: Lobesia botrana, the European grapevine moth, affects Vitis vinifera L. and other species of economic importance in a number of countries through damage caused by its larvae in berries and associated secondary diseases such as Botrytis cinerea . Control of the moth in urban areas is difficult due to poor chemical management of infested plants in houses. Additionally, in winter, L. botrana is in its pupal stage covered with a cocoon that prevents the penetration of chemical pesticides. For this reason, the objective of this work was to control the pupal stage with a formulation based on the entomopathogenic fungus Beauveria pseudobassiana in urban areas. Results: The strain RGM 1747 was identified as B. pseudobassiana by multilocus sequence analysis . The biocontrol activity of this formulated fungus against the infestation of vines with breeding pupae without cocoons showed 100% infection 21 days after inoculation under winter conditions. Finally, the biocontrol activity of the formulated fungus against natural infestations of L. botrana in winter in urban areas reached an efficacy of 51%. This result suggests that the B. pseudobassiana formulation is able to penetrate the cocoon and contributes to the integrated pest management of L. botrana .


BioControl ◽  
2019 ◽  
Vol 64 (5) ◽  
pp. 501-511 ◽  
Author(s):  
Rodrigo López Plantey ◽  
Daciana Papura ◽  
Carole Couture ◽  
Denis Thiéry ◽  
Pablo H. Pizzuolo ◽  
...  

2019 ◽  
Author(s):  
Fabiola Altimira ◽  
Nathalia De La Barra ◽  
Patricia Rebufel ◽  
Sylvana Soto ◽  
Rodrigo Soto ◽  
...  

Abstract Objective: Lobesia botrana, the European grapevine moth, affects Vitis vinifera L. and other species of economic importance in a number of countries through damage caused by its larvae in berries and associated secondary diseases such as Botrytis cinerea. Control of the moth in urban areas is difficult due to poor chemical management of infested plants in houses. Additionally, in winter, L. botrana is in its pupal stage covered with a cocoon that prevents the penetration of chemical pesticides. For this reason, the objective of this work was to control the pupal stage with a formulation based on the entomopathogenic fungus Beauveria pseudobassiana in urban areas. Results: The present study of the biocontrol activity of the formulated fungus against the infestation of vines with breeding pupae without cocoons showed 100% infection 21 days after inoculation under winter conditions. Finally, the biocontrol activity of the formulated fungus against natural infestations of L. botrana in winter in urban areas reached an efficacy of 51%. This result suggests that the B. pseudobassiana formulation is able to penetrate the cocoon and contributes to the integrated pest management of L. botrana.


2019 ◽  
Author(s):  
Fabiola Altimira ◽  
Nathalia De La Barra ◽  
Patricia Rebufel ◽  
Sylvana Soto ◽  
Rodrigo Soto ◽  
...  

Abstract Objective: Lobesia botrana, the European grapevine moth, affects Vitis vinifera L. and other species of economic importance in a number of countries through damage caused by its larvae in berries and associated secondary diseases such as Botrytis cinerea . Control of the moth in urban areas is difficult due to poor chemical management of infested plants in houses. Additionally, in winter, L. botrana is in its pupal stage covered with a cocoon that prevents the penetration of chemical pesticides. For this reason, the objective of this work was to control the pupal stage with a formulation based on the entomopathogenic fungus Beauveria pseudobassiana in urban areas. Results: The strain RGM 1747 was identified as B. pseudobassiana by multilocus sequence analysis . The biocontrol activity of this formulated fungus against the infestation of vines with breeding pupae without cocoons showed 100% infection 21 days after inoculation under winter conditions. Finally, the biocontrol activity of the formulated fungus against natural infestations of L. botrana in winter in urban areas reached an efficacy of 51%. This result suggests that the B. pseudobassiana formulation is able to penetrate the cocoon and contributes to the integrated pest management of L. botrana .


2017 ◽  
Vol 6 (8) ◽  
pp. 5459
Author(s):  
Chandra Teja K. ◽  
Rahman S. J.

Entomopathogenic fungi like Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii are used in biological control of agricultural insect pests. Their specific mode of action makes them an effective alternative to the chemical Insecticides. Virulent strains of Entomopathogenic fungi are effectively formulated and used as bio-insecticides world-wide. Amenable and economical multiplication of a virulent strain in a large scale is important for them to be useful in the field. Culture media plays a major role in the large-scale multiplication of virulent strains of Entomopathogens. Different substrates and media components are being used for this purpose. Yet, each strain differs in its nutritional requirements for the maximum growth and hence it is necessary to standardize the right components and their optimum concentrations in the culture media for a given strain of Entomopathogen. In the current study, three different nitrogen sources and two different carbon sources were tried to standardize the mass multiplication media for seven test isolates of Entomopathogenic fungi. A study was also conducted to determine the ideal grain media for the optimum conidial yields of the test isolates. Yeast extract was found to be the best Nitrogen source for the isolates. The isolates tested, differed in their nutritional requirements and showed variation in the best nitrogen and carbon sources necessary for their growth. Variation was also found in the optimum concentration of both the ingredients for the growth and sporulation of the isolates. In the solid-state fermentation study, rice was found to be the best grain for the growth of most of the fungi followed by barley. The significance of such a study in the development of an effective Myco-insecticide is vital and can be successfully employed in agriculture is discussed.


2019 ◽  
Vol 20 ◽  
pp. 101262 ◽  
Author(s):  
Alagersamy Alagesan ◽  
Balakrishnan Padmanaban ◽  
Gunasekaran Tharani ◽  
Sundaram Jawahar ◽  
Subramanian Manivannan

2011 ◽  
Vol 4 (3) ◽  
pp. 332-340 ◽  
Author(s):  
Kimberly K. Crider

AbstractQuantification of interference with biological control agents can provide support for anecdotal claims of success or failure of agent establishment and efficacy. This study was initiated because of observed predation of cinnabar moth larvae by carpenter ants when releasing larvae for the control of tansy ragwort, an invasive plant in Montana. Biotic and abiotic factors were compared among three sites with historically variable moth population establishment. Two experiments were developed to (1) observe and document insect activity, predation, or disappearance on tansy ragwort stems either protected or accessible to ants; and (2) quantify the effects of ant exclusion on herbivory of tansy ragwort. Site comparisons indicated that ant colony density was highest at the driest of three sites, and, interestingly, no ant colonies were detected at the site with higher observed numbers of moth larvae and adults and lower densities of tansy ragwort. Available substrate (logs and stumps) for ant colonization did not differ between the three sites. In the ant exclusion experiments, a larger number of larvae were missing on plants accessible to ants (63%) compared with plants where ants were excluded (39%) after 36 h. Direct observation of predation of larvae by carpenter ants accounted for 9% of missing larvae on stems accessible to ants. Larvae were able to consume 81% of original flowers or buds on ant-excluded stems, compared with 18% consumption on ant-accessible stems, suggesting that ant predation could limit the efficacy of cinnabar moth larvae. These results provide one of many possible explanations for the anecdotal observations of large, persistent populations of cinnabar moths in moist areas. This work emphasizes the importance of post-release observation and monitoring to detect and, ideally, quantify factors to support anecdotal perceptions regarding the fate and subsequent efficacy of insect biological-control agents.


Sign in / Sign up

Export Citation Format

Share Document