scholarly journals 1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades

Instruments ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 59
Author(s):  
Joshua Mann ◽  
Gerard Lawler ◽  
James Rosenzweig

Electron rescattering has been well studied and simulated for cases with ponderomotive energies of the quasi-free electrons, derived from laser–gas and laser–surface interactions, lower than 50 eV. However, with advents in longer wavelengths and laser field enhancement metallic surfaces, previous simulations no longer suffice to describe more recent strong field and high yield experiments. We present a brief introduction to and some of the theoretical and empirical background of electron rescattering emissions from a metal. We set upon using the Jellium potential with a shielded atomic surface potential to model the metal. We then explore how the electron energy spectra are obtained in the quantum simulation, which is performed using a custom computationally intensive time-dependent Schrödinger equation solver via the Crank–Nicolson method. Finally, we discuss the results of the simulation and examine the effects of the incident laser’s wavelength, peak electric field strength, and field penetration on electron spectra and yields. Future simulations will investigate a more accurate density functional theory metallic model with a system of several non-interacting electrons. Eventually, we will move to a full time-dependent density functional theory approach.

2014 ◽  
Vol 90 (3) ◽  
Author(s):  
A. Crawford-Uranga ◽  
U. De Giovannini ◽  
E. Räsänen ◽  
M. J. T. Oliveira ◽  
D. J. Mowbray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document