scholarly journals Assessment of the Wind Energy Potential along the Romanian Coastal Zone

Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 41
Author(s):  
Alina Girleanu ◽  
Florin Onea ◽  
Eugen Rusu

The present work aims to provide a comprehensive picture of the wind energy potential that characterizes the Romanian coastal environment using in situ measurements and reanalysis of wind data (ERA5) that cover a 42–year time interval (1979–2020). A total of 16 reference points (both land and offshore) equally distributed along the Romanian sector are used to evaluate the local wind energy potential, targeting in this way several sites where a renewable wind project could be established. Compared to the in situ measurements (land points), the ERA5 dataset underestimates the wind speed by at least 11.57%, this value increasing as we approach the coastline. From the analysis of the spatial maps, it is likely that the wind speed steadily increases from onshore to offshore, with a sharp variation near the coastline being reported. Furthermore, the assessment of some state-of-the-art offshore wind turbines was conducted using 12 systems defined by rated capacity ranging from 2 to 10 MW. Some scenarios were proposed to identify sustainable offshore wind projects to be implemented in the Romanian coastal zone based on these results.

Introduction. One of the most popular alternative sources is wind energy. Offshore power stations are those which use kinetic energy of the wind and are built in shallow seas. Ukraine has access to the Black Sea and the Sea of Azov and has set the course to intensify the use of its own energy sources. It is therefore advisable to consider the development of offshore wind energy in its coastal zones. The purpose of this article is to analyze the energy potential of the coastal zone of the Sea of Azov to determine the prospects for offshore wind energy development. The main material. The economically feasible wind power of Ukraine is 16 GW but a significant percentage of its territory is not suitable for the installation of wind power plants, so it is advisable to use the seas area. In the coastal regions of Ukraine the average wind speed exceeds 5 m/s, which makes them effective in terms of using wind energy. Using GIS modeling, based on the data from the Global Atlas for Renewable Energy «IRENA», the spatial distribution of the average annual wind speed over the Sea of Azov at an altitude of 50, 100, 200 m has been analyzed. Due to the wind speed from 6 to 9 m/s, the Sea of Azov has significant wind energy potential. Wind speed rising from west to east has been detected. The concentration zone of maximum wind speed is the northern and north-eastern coast of the Sea of Azov. Accordingly, most electricity can be produced in Taganrog Bay, and the smallest amount– at the western coast of the sea. The data on the the generated power that could be extracted by a turbine installed in these areas at different altitudes has been calculated. At an altitude of 200 m, the figures are maximum and range from 9.4 to 30.3 GWh/year. In general, the wind indexes as well as the area of the zones suitable for the installation of wind farms increase with a height. In this case, it is economically advantageous to install large wind turbines with a tower height at 100 m. Conclusions and further research. The offshore wind energy in the coastal zone of the Sea of Azov can be developed, but it needs support at the state level. The prospect of this study is to analyze the limiting factors for this water area and to clarify the design areas of the industry.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2879 ◽  
Author(s):  
Jianxing Yu ◽  
Yiqin Fu ◽  
Yang Yu ◽  
Shibo Wu ◽  
Yuanda Wu ◽  
...  

Wind energy, one of the most sustainable renewable energy sources, has been extensively developed worldwide. However, owing to the strong regional and seasonal differences, it is necessary to first evaluate wind energy resources in detail. In this study, the offshore wind characteristics and wind energy potential of Bohai Bay (38.7° N, 118.7° E), China, were statistically analyzed using two-year offshore wind data with a time interval of one second. Furthermore, Nakagami and Rician distributions were used for wind energy resource assessment. The results show that the main wind direction in Bohai Bay is from the east (−15°–45°), with a speed below 12 m/s, mainly ranging from 4 to 8 m/s. The main wind speed ranges in April and October are higher than those in August and December. The night wind speed is generally higher than that in the daytime. The Nakagami and Rician distributions performed reasonably in calculating the wind speed distributions and potential assessments. However, Nakagami distribution provided better wind resource assessment in this region. The wind potential assessment results suggest that Bohai Bay could be considered as a wind class I region, with east as the dominant wind direction.


2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Florin Onea ◽  
Eugen Rusu ◽  
Liliana Rusu

The European offshore wind market is continuously expanding. This means that, together with significant technological developments, new coastal environments should be considered for the implementation of the wind farms, as is the case of the Black Sea, which is targeted in the present work. From this perspective, an overview of the wind energy potential in the Romanian exclusive economic zone (EEZ) in the Black Sea is presented in this work. This is made by analyzing a total of 20 years of wind data (corresponding to the time interval 2000–2019) coming from different sources, which include ERA5 reanalysis data and satellite measurements. Furthermore, a direct comparison between these datasets was also carried out. Finally, the results of the present work indicate that the Romanian offshore areas can replicate the success reported by the onshore wind projects, of which we can mention the Fantanele-Cogealac wind farm with an operating capacity of 600 MW.


2019 ◽  
Vol 7 (5) ◽  
pp. 142 ◽  
Author(s):  
Florin Onea ◽  
Liliana Rusu

At the European level, offshore wind projects are already considered a competitive market. Nevertheless, this is not yet the case of the enclosed sea basins, such as the Black Sea, where no offshore wind farm is operating at this moment. From this perspective, the objective of the present work is to identify the most suitable sites where a wind project can be developed in the Romanian coastal areas. Various parameters, such as wind speed, water depth, distance to shore, and turbine performance, are considered. A picture of the local wind characteristics is first provided considering 20 years of reanalysis data, which cover the time interval from January 1998 to December 2017. The results indicated that the best sites to implement a wind project are located in the northern sector of the Black Sea, close to the Danube Delta. It was also noticed an important variation of the wind speed between onshore and 20 km offshore, for which an increase of about 55% was estimated.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4435
Author(s):  
Travis C. Douville ◽  
Dhruv Bhatnagar

The significant offshore wind energy potential of Oregon faces several challenges, including a power grid which was not developed for the purpose of transmitting energy from the ocean. The grid impacts of the energy resource are considered through the lenses of (i) resource complementarity with Variable Renewable Energy resources; (ii) correlations with load profiles from the four balancing authorities with territory in Oregon; and (iii) spatial value to regional and coastal grids as represented through a production cost model of the Western Interconnection. The capacity implications of the interactions between offshore wind and the historical east-to-west power flows of the region are discussed. The existing system is shown to accommodate more than two gigawatts of offshore wind interconnections with minimal curtailment. Through three gigawatts of interconnection, transmission flows indicate a reduction of coastal and statewide energy imports as well as minimal statewide energy exports.


Author(s):  
Yusuf Alper Kaplan

In this study, the compatibility of the real wind energy potential to the estimated wind energy potential by Weibull Distribution Function (WDF) of a region with low average wind speed potential was examined. The main purpose of this study is to examine the performance of six different methods used to find the coefficients of the WDF and to determine the best performing method for selected region. In this study seven-year hourly wind speed data obtained from the general directorate of meteorology of this region was used. The root mean square error (RMSE) statistical indicator was used to compare the efficiency of all used methods. Another main purpose of this study is to observe the how the performance of the used methods changes over the years. The obtained results showed that the performances of the used methods showed slight changes over the years, but when evaluated in general, it was observed that all method showed acceptable performance. Based on the obtained results, when the seven-year data is evaluated in this selected region, it can be said that the MM method shows the best performance.


Author(s):  
V. P. Evstigneev ◽  
◽  
N. A. Lemeshko ◽  
V. A. Naumova ◽  
M. P. Evstigneev ◽  
...  

The paper deals with assessing an impact of wind climate change on the wind energy potential of the Azov and Black Sea coast region. A lower estimate of operating time for wind power installation and a potential annual energy output for the region are given for the case of Vestas V117-4.2MW. Calculation has been performed of a long-term mean wind speed for two adjacent climatic periods (1954–1983 and 1984–2013) based on data from meteorological stations of the Black and Azov Sea region. The results show a decrease in wind speed at all meteorological stations except for Novorossiysk. The wind climate change is confirmed by comparing two adjoined 30-year periods and by estimating linear trends of the mean annual wind speed for the period 1954–2013, which are negative and significant for almost all meteorological stations in the region (α = 1 %). The trend values were estimated by the nonparametric method of robust linear smoothing using the Theil – Sen function. In the present study, the uncertainty of wind energy resource induced by a gradual wind climate change is estimated for perspective planning of this branch of energy sector. Despite the observed trends in the wind regime, average wind speeds in the Azov and Black Sea region are sufficient for planning the location of wind power plants.


Sign in / Sign up

Export Citation Format

Share Document