scholarly journals Novel MAG Variant Causes Cerebellar Ataxia with Oculomotor Apraxia: Molecular Basis and Expanded Clinical Phenotype

2020 ◽  
Vol 9 (4) ◽  
pp. 1212
Author(s):  
Mariana Santos ◽  
Joana Damásio ◽  
Célia Kun-Rodrigues ◽  
Clara Barbot ◽  
Jorge Sequeiros ◽  
...  

Homozygous variants in MAG, encoding myelin-associated glycoprotein (MAG), have been associated with complicated forms of hereditary spastic paraplegia (HSP). MAG is a glycoprotein member of the immunoglobulin superfamily, expressed by myelination cells. In this study, we identified a novel homozygous missense variant in MAG (c.124T>C; p.Cys42Arg) in a Portuguese family with early-onset autosomal recessive cerebellar ataxia with neuropathy and oculomotor apraxia. We used homozygosity mapping and exome sequencing to identify the MAG variant, and cellular studies to confirm its detrimental effect. Our results showed that this variant reduces protein stability and impairs the post-translational processing (N-linked glycosylation) and subcellular localization of MAG, thereby associating a loss of protein function with the phenotype. Therefore, MAG variants should be considered in the diagnosis of hereditary cerebellar ataxia with oculomotor apraxia, in addition to spastic paraplegia.

2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
A. Enderli ◽  
B. Heinrich ◽  
P. Joset ◽  
J. De Geyter ◽  
J. Scheer ◽  
...  

2021 ◽  
Author(s):  
Barbara Vona ◽  
Neda Mazaheri ◽  
Sheng-Jia Lin ◽  
Lucy A. Dunbar ◽  
Reza Maroofian ◽  
...  

AbstractDeafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


2015 ◽  
Vol 128 ◽  
pp. 44-46
Author(s):  
Joanna Pera ◽  
Sarah Lechner ◽  
Saskia Biskup ◽  
Magdalena Strach ◽  
Tomasz Grodzicki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document