scholarly journals Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

2015 ◽  
Vol 3 (4) ◽  
pp. 177-192 ◽  
Author(s):  
Hemanth Akkiraju ◽  
Anja Nohe
2011 ◽  
Vol 194 (2-4) ◽  
pp. 320-325 ◽  
Author(s):  
Seika Matsushima ◽  
Noritaka Isogai ◽  
Robin Jacquet ◽  
Elizabeth Lowder ◽  
Taku Tokui ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4987
Author(s):  
Jianjing Lin ◽  
Li Wang ◽  
Jianhao Lin ◽  
Qiang Liu

Osteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a tremendous burden on the health care system worldwide. Although cell therapy has made significant progress in the treatment of OA and cartilage regeneration, there are still a series of problems. Recently, more and more evidence shows that extracellular vesicles (EVs) play an important role in the progression and treatment of OA. Here, we discuss that EVs from different cell sources not only participate in OA progression, but can also be used as effective tools for the diagnosis and treatment of OA. In addition, cell pretreatment strategies and EV tissue engineering play an increasingly prominent role in the field of OA treatment. This article will systematically review the latest developments in these areas. As stated above, it may provide new insights for improving OA and cartilage regeneration.


1989 ◽  
Vol 16 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Fernando Ortiz Monasterio ◽  
Ernesto J. Ruas

Reports ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Sawako Ono ◽  
Takuma Makino ◽  
Hiroyuki Yanai ◽  
Hotaka Kawai ◽  
Kiyofumi Takabatake ◽  
...  

Spindle cell carcinoma (SCSCC) with osteoid and/or cartilage formation in the head and neck is rare; only one case was reported in the tongue. Herein, we report an SCSCC with osteoid and cartilage formation of the tongue developed in an 85-year-old man, and then review the report.


Author(s):  
Joseph A. Ayariga

During cartilage development, the lineage commitment and condensation of stem cells into chondrocytes and their differentiation involves a ubiquitous signaling cascades and huge numbers of transcriptional factors. The kinetic requirements and the stoichiometry for the expression of key transcriptional factors are relevant and must be met to form proper and functionally competent cartilage tissue. More interestingly also, an exact and precise spatio-temporal distribution of these molecules are as necessary in the proper tissue morphogenesis and patterning as the relevant physical conditions and micro environmental forces playing at the background during embryogenesis. A milestone of experimental achievements has been obtained over the years on several signaling pathways involved in cartilage development. Several fate determining transcriptional factors has also been investigated and determined with regards to the transition of stem cells (pluripotent, embryonic, etc.) into chondrocytes. These transcriptional factors serve as master controllers in chondrocytes proliferation and hypertrophy. Concerns that variability in signaling and transcriptional factors have detrimental effect on cartilage formation and could potentiate most cartilage related diseases have led most scientists to investigate the role of signaling molecules and transcriptional factors implicated in osteoarthritis, rheumatoid arthritis, and other cartilage degenerative diseases. On bases of spatio-temporal distribution of transcriptional factors, there exist functional overlaps, hence, it is difficult to draw a hard line of demarcation of roles at each point of the cell’s life, nonetheless, it is also markedly established that some factors are skewed to the chondrocyte’ survival and proliferation, and others known for their master’s role in the cell’s apoptotic, necrotic and senescence. Here we review some published works on selected signaling pathways and transcriptional factors that are preferentially expressed in chondrogenic cells and their role as major players in cartilage formation, cartilage diseases, along with some highlights of unique signaling molecules that are indispensable in cartilage tissue regeneration and management.


Arthritis ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Javad Fattahi ◽  
Abbas Mirshafiey

Rheumatoid arthritis (RA) is a chronic, autoimmune, and complex inflammatory disease leading to bone and cartilage destruction, whose cause remains obscure. Accumulation of genetic susceptibility, environmental factors, and dysregulated immune responses are necessary for mounting this self-reacting disease. Inflamed joints are infiltrated by a heterogeneous population of cellular and soluble mediators of the immune system, such as T cells, B cells, macrophages, cytokines, and prostaglandins (PGs). Prostaglandins are lipid inflammatory mediators derived from the arachidonic acid by multienzymatic reactions. They both sustain homeostatic mechanisms and mediate pathogenic processes, including the inflammatory reaction. They play both beneficial and harmful roles during inflammation, according to their site of action and the etiology of the inflammatory response. With respect to the role of PGs in inflammation, they can be effective mediators in the pathophysiology of RA. Thus the use of agonists or antagonists of PG receptors may be considered as a new therapeutic protocol in RA. In this paper, we try to elucidate the role of PGs in the immunopathology of RA.


Sign in / Sign up

Export Citation Format

Share Document