transcriptional factors
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 71)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Waseem Raza ◽  
Jinlei Guo ◽  
Muhammad Imran Qadir ◽  
Baogang Bai ◽  
Syed Aun Muhammad

BackgroundType 2 diabetes mellitus (T2DM) is a heterogeneous, metabolic, and chronic condition affecting vast numbers of the world’s population. The related variables and T2DM associations have not been fully understood due to their diverse nature. However, functional genomics can facilitate understanding of the disease. This information will be useful in drug design, advanced diagnostic, and prognostic markers.AimTo understand the genetic causes of T2DM, this study was designed to identify the differentially expressed genes (DEGs) of the disease.MethodsWe investigated 20 publicly available disease-specific cDNA datasets from Gene Expression Omnibus (GEO) containing several attributes including gene symbols and clone identifiers, GenBank accession numbers, and phenotypic feature coordinates. We analyzed an integrated system-level framework involving Gene Ontology (GO), protein motifs and co-expression analysis, pathway enrichment, and transcriptional factors to reveal the biological information of genes. A co-expression network was studied to highlight the genes that showed a coordinated expression pattern across a group of samples. The DEGs were validated by quantitative PCR (qPCR) to analyze the expression levels of case and control samples (50 each) using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reference gene.ResultsFrom the list of 50 DEGs, we ranked three T2DM-related genes (p < 0.05): SRR, NFKB1, and PDE4B. The enriched terms revealed a significant functional role in amino acid metabolism, signal transduction, transmembrane and intracellular transport, and other vital biological functions. DMBX1, TAL1, ZFP161, NFIC (66.7%), and NR1H4 (33.3%) are transcriptional factors associated with the regulatory mechanism. We found substantial enrichment of insulin signaling and other T2DM-related pathways, such as valine, leucine and isoleucine biosynthesis, serine and threonine metabolism, adipocytokine signaling pathway, P13K/Akt pathway, and Hedgehog signaling pathway. The expression profiles of these DEGs verified by qPCR showed a substantial level of twofold change (FC) expression (2−ΔΔCT) in the genes SRR (FC ≤ 0.12), NFKB1 (FC ≤ 1.09), and PDE4B (FC ≤ 0.9) compared to controls (FC ≥ 1.6). The downregulated expression of these genes is associated with pathophysiological development and metabolic disorders.ConclusionThis study would help to modulate the therapeutic strategies for T2DM and could speed up drug discovery outcomes.


2021 ◽  
Vol 22 (24) ◽  
pp. 13287
Author(s):  
Hind Emad Fadoul ◽  
Félix Juan Martínez Rivas ◽  
Kerstin Neumann ◽  
Salma Balazadeh ◽  
Alisdair R. Fernie ◽  
...  

Drought is one of the most important threats to plants and agriculture; therefore, understanding of the mechanisms of drought tolerance is crucial for breeding of new tolerant varieties. Here, we assessed the effects of a long-term water deficit stress simulated on a precision phenotyping system on some morphological criteria and metabolite traits, as well as the expression of drought associated transcriptional factors of two contrasting drought-responsive African wheat cultivars, Condor and Wadielniel. The current study showed that under drought stress Wadielniel exhibits significant higher tillering and height compared to Condor. Further, we used gas chromatography and ultra-high performance liquid chromatography mass-spectrometry to identify compounds that change between the two cultivars upon drought. Partial least square discriminant analysis (PLS-DA) revealed that 50 metabolites with a possible role in drought stress regulation were significantly changed in both cultivars under water deficit stress. These metabolites included several amino acids, most notably proline, some organic acids, and lipid classes PC 36:3 and TAG 56:9, which were significantly altered under drought stress. Here, the results discussed in the context of understanding the mechanisms involved in the drought response of wheat cultivars, as the phenotype parameters, metabolite content and expression of drought associated transcriptional factors could also be used for potential crop improvement under drought stress.


Author(s):  
Joseph A. Ayariga

During cartilage development, the lineage commitment and condensation of stem cells into chondrocytes and their differentiation involves a ubiquitous signaling cascades and huge numbers of transcriptional factors. The kinetic requirements and the stoichiometry for the expression of key transcriptional factors are relevant and must be met to form proper and functionally competent cartilage tissue. More interestingly also, an exact and precise spatio-temporal distribution of these molecules are as necessary in the proper tissue morphogenesis and patterning as the relevant physical conditions and micro environmental forces playing at the background during embryogenesis. A milestone of experimental achievements has been obtained over the years on several signaling pathways involved in cartilage development. Several fate determining transcriptional factors has also been investigated and determined with regards to the transition of stem cells (pluripotent, embryonic, etc.) into chondrocytes. These transcriptional factors serve as master controllers in chondrocytes proliferation and hypertrophy. Concerns that variability in signaling and transcriptional factors have detrimental effect on cartilage formation and could potentiate most cartilage related diseases have led most scientists to investigate the role of signaling molecules and transcriptional factors implicated in osteoarthritis, rheumatoid arthritis, and other cartilage degenerative diseases. On bases of spatio-temporal distribution of transcriptional factors, there exist functional overlaps, hence, it is difficult to draw a hard line of demarcation of roles at each point of the cell’s life, nonetheless, it is also markedly established that some factors are skewed to the chondrocyte’ survival and proliferation, and others known for their master’s role in the cell’s apoptotic, necrotic and senescence. Here we review some published works on selected signaling pathways and transcriptional factors that are preferentially expressed in chondrogenic cells and their role as major players in cartilage formation, cartilage diseases, along with some highlights of unique signaling molecules that are indispensable in cartilage tissue regeneration and management.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yangyang Feng ◽  
Tongyue Zhang ◽  
Yijun Wang ◽  
Meng Xie ◽  
Xiaoyu Ji ◽  
...  

The homeobox (HOX) genes encoding an evolutionarily highly conserved family of homeodomain-containing transcriptional factors are essential for embryogenesis and tumorigenesis. HOX genes are involved in cell identity determination during early embryonic development and postnatal processes. The deregulation of HOX genes is closely associated with numerous human malignancies, highlighting the indispensable involvement in mortal cancer development. Since most HOX genes behave as oncogenes or tumor suppressors in human cancer, a better comprehension of their upstream regulators and downstream targets contributes to elucidating the function of HOX genes in cancer development. In addition, targeting HOX genes may imply therapeutic potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine receptor kinases, small molecular chemical inhibitors, and small interfering RNA strategies, are difficult to implement for targeting transcriptional factors on account of the dual function and pleiotropic nature of HOX genes-related molecular networks. This paper summarizes the current state of knowledge on the roles of HOX genes in human cancer and emphasizes the emerging importance of HOX genes as potential therapeutic targets to overcome the limitations of present cancer therapy.


mSystems ◽  
2021 ◽  
Author(s):  
Charlotte Oriol ◽  
Liviu Cengher ◽  
Adhar C. Manna ◽  
Tony Mauro ◽  
Marie-Laure Pinel-Marie ◽  
...  

Staphylococcus aureus , a commensal and opportunist pathogen, is responsible for a large number of human and animal infections, from benign to severe. Gene expression adaptation during infection requires a complex network of regulators, including transcriptional factors (TF) and sRNAs.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Dana May ◽  
Anna Bellizzi ◽  
Workineh Kassa ◽  
John M. Cipriaso ◽  
Maurizio Caocci ◽  
...  

Polyomavirus JC (JCPyV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV infection is very common in childhood and, under conditions of severe immunosuppression, JCPyV may reactivate to cause PML. JC viral proteins expression is regulated by the JCPyV non-coding control region (NCCR), which contains binding sites for cellular transcriptional factors which regulate JCPyV transcription. Our earlier studies suggest that JCPyV reactivation occurs within glial cells due to cytokines such as TNF-α which stimulate viral gene expression. In this study, we examined interferon-α (IFNα) or β (IFNβ) which have a negative effect on JCPyV transcriptional regulation. We also showed that these interferons induce the endogenous liver inhibitory protein (LIP), an isoform of CAAT/enhancer binding protein beta (C/EBPβ). Treatment of glial cell line with interferons increases the endogenous level of C/EBPβ-LIP. Furthermore, we showed that the negative regulatory role of the interferons in JCPyV early and late transcription and viral replication is more pronounced in the presence of C/EBPβ-LIP. Knockdown of C/EBPβ-LIP by shRNA reverse the inhibitory effect on JCPyV viral replication. Therefore, IFNα and IFNβ negatively regulate JCPyV through induction of C/EBPβ-LIP, which together with other cellular transcriptional factors may control the balance between JCPyV latency and activation.


Author(s):  
Thais Teixeira Oliveira ◽  
Fabrícia Lima Fontes-Dantas ◽  
Rayssa Karla de Medeiros Oliveira ◽  
Daniele Maria Lopes Pinheiro ◽  
Leonam Gomes Coutinho ◽  
...  

The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Yuan ◽  
Hui Wang ◽  
Yan Bi ◽  
Yuqing Yan ◽  
Yizhou Gao ◽  
...  

NAC transcriptional factors constitute a large family in rice and some of them have been demonstrated to play crucial roles in rice immunity. The present study investigated the function and mechanism of ONAC066 in rice immunity. ONAC066 shows transcription activator activity that depends on its C-terminal region in rice cells. ONAC066-OE plants exhibited enhanced resistance while ONAC066-Ri and onac066-1 plants showed attenuated resistance to Magnaporthe oryzae. A total of 81 genes were found to be up-regulated in ONAC066-OE plants, and 26 of them were predicted to be induced by M. oryzae. Four OsWRKY genes, including OsWRKY45 and OsWRKY62, were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to NAC core-binding site in OsWRKY62 promoter and activated OsWRKY62 expression, indicating that OsWRKY62 is a ONAC066 target. A set of cytochrome P450 genes were found to be co-expressed with ONAC066 and 5 of them were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to promoters of cytochrome P450 genes LOC_Os02g30110, LOC_Os06g37300, and LOC_Os02g36150 and activated their transcription, indicating that these three cytochrome P450 genes are ONAC066 targets. These results suggest that ONAC066, as a transcription activator, positively contributes to rice immunity through modulating the expression of OsWRKY62 and a set of cytochrome P450 genes to activate defense response.


Sign in / Sign up

Export Citation Format

Share Document