scholarly journals Preparation and Characterization of Moldable Demineralized Bone Matrix/Calcium Sulfate Composite Bone Graft Materials

2021 ◽  
Vol 12 (4) ◽  
pp. 56
Author(s):  
I-Cheng Chen ◽  
Chen-Ying Su ◽  
Chun-Cheih Lai ◽  
Yi-Syue Tsou ◽  
Yudong Zheng ◽  
...  

Demineralized bone matrix (DBM) is a decalcified allo/xenograft retaining collagen and noncollagenous proteins, which has been extensively used because of its osteoconductive and osteoinductive properties. Calcium sulfate (CaSO4, CS) is a synthetic bone substitute used in bone healing with biocompatible, nontoxic, bioabsorbable, osteoconductive, and good mechanical characteristics. This study aims to prepare a DBM/CS composite bone graft material in a moldable putty form without compromising the peculiar properties of DBM and CS. For this purpose, firstly, porcine femur was defatted using chloroform/methanol and extracted by acid for demineralization, then freeze-dried and milled/sieved to obtain DBM powder. Secondly, the α-form and β-form of calcium sulfate hemihydrate (CaSO4 •0.5H2O, CSH) were produced by heating gypsum (CaSO4 •2H2O). The morphology and particle sizes of α- and β-CSH were obtained by SEM, and their chemical properties were confirmed by EDS, FTIR and XRD. Furthermore, the DBM-based graft was mixed with α- or β-CSH at a ratio of 9:1, and glycerol/4% HPMC was added as a carrier to produce a putty. DBM/CSH putty possesses a low washout rate, good mechanical strength and biocompatibility. In conclusion, we believe that the moldable DBM/CSH composite putty developed in this study could be a promising substitute for the currently available bone grafts, and might have practical application in the orthopedics field as a potential bone void filler.

2017 ◽  
Vol 3 (6) ◽  
pp. 344 ◽  
Author(s):  
Ferdiansyah Ferdiansyah ◽  
Dwikora Novembri Utomo ◽  
Heri Suroto

Bone defect remains a big challenge for orthopedic surgeon. Bone grafting nowadays become the second common transplantation after blood transfusion. Autogenous bone graft is the gold standard in treatment of bone defect, but it’s source limitation and donor site morbidity makes some surgeon were looking for allograft or xenograft. There are some issues with allo- and xenograft about difficulty in corporation and rejection reaction. This study explores the immunogenicity of allograft and xenograft. Keyword :  freeze-dried xenograft, freeze-dried allograft, hydroxyapatite xenograft, demineralized bone matrix xenograft.


2011 ◽  
Vol 217-218 ◽  
pp. 1006-1013
Author(s):  
Zhi Yu Zhou ◽  
Li Jin Zou ◽  
Hai Sheng Li ◽  
Cody Bunger ◽  
Xue Nong Zou

An ideal bone graft material should have osteocondutive, osteroindurctive, and osteogenic features. Scientists and doctors have been trying to develop this kind of material for over one century. However, all the features of few materials used in clinic now have been qualified. Recently, COLLOSS, as the new generation bone graft material of demineralized bone matrix, almost achieved this height. The paper presents a general survey of COLLOSS including its extraction processes, biological characteristics, and application prospects.


2021 ◽  
pp. 105566562110251
Author(s):  
Vijay Kumar ◽  
Vidya Rattan ◽  
Sachin Rai ◽  
Satinder Pal Singh ◽  
Jai Kumar Mahajan

Objective: Comparison between bovine-derived demineralized bone matrix (DMBM) and iliac crest graft over long term for secondary alveolar bone grafting (SABG) in patients with unilateral cleft lip and palate (UCLP) in terms of radiological and clinical outcomes. Design: Prospective, randomized, parallel groups, double-blind, controlled trial. Setting: Unit of Oral and Maxillofacial Surgery, Oral Health Science Centre, Postgraduate Institute of Medical Education & Research, Chandigarh. Participants: Twenty patients with UCLP. Interventions: Patients were allocated into group I (Iliac crest bone graft) and group II (DMBM) for SABG. Outcomes were assessed at 2 weeks, 6 months, and then after mean follow-up period of 63 months. Outcomes Measures: Volumetric analysis of the grafted bone in the alveolar cleft site was done through cone beam computed tomography using Cavalieri principle and modified assessment tool. Clinical assessment was performed in terms of pain, swelling, duration of hospital stay, cost of surgery, alar base symmetry, and donor site morbidity associated with iliac crest harvesting. Results: Volumetric analysis through Cavalieri principle revealed comparable bone uptake at follow-up of 6 months between group I (70%) and group II (69%). Modified assessment tool showed no significant difference between horizontal and vertical bone scores over short- and long-term follow-up. In group II, there was higher cost of surgery, but no donor site morbidity unlike group I. Conclusions: Demineralized bone matrix proved analogous to iliac crest bone graft as per volumetric analysis over shorter period. However, although statistically insignificant, net bone volume achieved was lower than the iliac crest graft at longer follow-up.


2021 ◽  
Vol 11 (9) ◽  
pp. 1497-1504
Author(s):  
Jinlong Liu ◽  
Yicai Zhang ◽  
Lin Qiu ◽  
Yujuan Zhang ◽  
Bin Gao

The material properties of nanocellulose (NC) can effectively enhance the structural stability of composite materials. However, the research related to NC/α-calcium sulfate hemihydrate (CSH) composites is largely lacking. In this paper, we explore the combination of these two materials and determine their elaborate biological activities in vivo. Using α-CSH as the matrix, the composite bone graft materials were produced according to different proportions of NC. Then the mechanical strength of the composite bone graft was measured, and the results were analyzed by X-ray diffraction and scanning electron microscopy (SEM). To conduct the material in vivo evaluation, 0% (CN0) and 0.75% (CN0.75) NC/α-CSH composite bone graft materials were implanted into a femoral condyle defect model. The results indicated that NC could significantly enhance the mechanical properties of α-CSH. The SEM analysis indicated that the NC shuttled between the crystal gaps and formed a three-dimensional network structure, which was firmly combined with the crystal structure. Meanwhile, the CN0.75 scaffold remained at 12 weeks postoperation, which provided a long-term framework for new bone formation. Overall, our findings demonstrate that, with a 0.75% NC/α-CSH composite demonstrating good potential as a bone graft material for clinical bone grafting.


Sign in / Sign up

Export Citation Format

Share Document