scholarly journals Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity

2021 ◽  
Vol 7 (9) ◽  
pp. 187
Author(s):  
Seena Joseph ◽  
Oludayo O. Olugbara

Salient object detection represents a novel preprocessing stage of many practical image applications in the discipline of computer vision. Saliency detection is generally a complex process to copycat the human vision system in the processing of color images. It is a convoluted process because of the existence of countless properties inherent in color images that can hamper performance. Due to diversified color image properties, a method that is appropriate for one category of images may not necessarily be suitable for others. The selection of image abstraction is a decisive preprocessing step in saliency computation and region-based image abstraction has become popular because of its computational efficiency and robustness. However, the performances of the existing region-based salient object detection methods are extremely hooked on the selection of an optimal region granularity. The incorrect selection of region granularity is potentially prone to under- or over-segmentation of color images, which can lead to a non-uniform highlighting of salient objects. In this study, the method of color histogram clustering was utilized to automatically determine suitable homogenous regions in an image. Region saliency score was computed as a function of color contrast, contrast ratio, spatial feature, and center prior. Morphological operations were ultimately performed to eliminate the undesirable artifacts that may be present at the saliency detection stage. Thus, we have introduced a novel, simple, robust, and computationally efficient color histogram clustering method that agglutinates color contrast, contrast ratio, spatial feature, and center prior for detecting salient objects in color images. Experimental validation with different categories of images selected from eight benchmarked corpora has indicated that the proposed method outperforms 30 bottom-up non-deep learning and seven top-down deep learning salient object detection methods based on the standard performance metrics.

Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2012 ◽  
Vol 239-240 ◽  
pp. 811-815
Author(s):  
Zhi Hai Sun ◽  
Teng Song ◽  
Wen Hui Zhou ◽  
Hua Zhang

Visual saliency detection has become an important step between computer vision and digital image processing. Recent methods almost form a computational model based on color, which are difficult to overcome the shortcoming with cluttered and textured background. This paper proposes a novel salient object detection algorithm integrating with region color contrast and histograms of oriented gradients (HoG). Extensively experiments show that our algorithm outperforms other state-of-art saliency methods, yielding higher precision and better recall rate, even lower mean absolution error.


Author(s):  
Yunzhi Zhuge ◽  
Yu Zeng ◽  
Huchuan Lu

Benefiting from the rapid development of Convolutional Neural Networks (CNNs), some salient object detection methods have achieved remarkable results by utilizing multi-level convolutional features. However, the saliency training datasets is of limited scale due to the high cost of pixel-level labeling, which leads to a limited generalization of the trained model on new scenarios during testing. Besides, some FCN-based methods directly integrate multi-level features, ignoring the fact that the noise in some features are harmful to saliency detection. In this paper, we propose a novel approach that transforms prior information into an embedding space to select attentive features and filter out outliers for salient object detection. Our network firstly generates a coarse prediction map through an encorder-decorder structure. Then a Feature Embedding Network (FEN) is trained to embed each pixel of the coarse map into a metric space, which incorporates much attentive features that highlight salient regions and suppress the response of non-salient regions. Further, the embedded features are refined through a deep-to-shallow Recursive Feature Integration Network (RFIN) to improve the details of prediction maps. Moreover, to alleviate the blurred boundaries, we propose a Guided Filter Refinement Network (GFRN) to jointly optimize the predicted results and the learnable guidance maps. Extensive experiments on five benchmark datasets demonstrate that our method outperforms state-of-the-art results. Our proposed method is end-to-end and achieves a realtime speed of 38 FPS.


Author(s):  
Bo Li ◽  
Zhengxing Sun ◽  
Yuqi Guo

Image saliency detection has recently witnessed rapid progress due to deep neural networks. However, there still exist many important problems in the existing deep learning based methods. Pixel-wise convolutional neural network (CNN) methods suffer from blurry boundaries due to the convolutional and pooling operations. While region-based deep learning methods lack spatial consistency since they deal with each region independently. In this paper, we propose a novel salient object detection framework using a superpixelwise variational autoencoder (SuperVAE) network. We first use VAE to model the image background and then separate salient objects from the background through the reconstruction residuals. To better capture semantic and spatial contexts information, we also propose a perceptual loss to take advantage from deep pre-trained CNNs to train our SuperVAE network. Without the supervision of mask-level annotated data, our method generates high quality saliency results which can better preserve object boundaries and maintain the spatial consistency. Extensive experiments on five wildly-used benchmark datasets show that the proposed method achieves superior or competitive performance compared to other algorithms including the very recent state-of-the-art supervised methods.


2013 ◽  
Vol 28 (10) ◽  
pp. 1448-1463 ◽  
Author(s):  
Keren Fu ◽  
Chen Gong ◽  
Jie Yang ◽  
Yue Zhou ◽  
Irene Yu-Hua Gu

Author(s):  
Pingping Zhang ◽  
Wei Liu ◽  
Huchuan Lu ◽  
Chunhua Shen

Salient object detection, which aims to identify and locate the most salient pixels or regions in images, has been attracting more and more interest due to its various real-world applications. However, this vision task is quite challenging, especially under complex image scenes. Inspired by the intrinsic reflection of natural images, in this paper we propose a novel feature learning framework for large-scale salient object detection. Specifically, we design a symmetrical fully convolutional network (SFCN) to learn complementary saliency features under the guidance of lossless feature reflection. The location information, together with contextual and semantic information, of salient objects are jointly utilized to supervise the proposed network for more accurate saliency predictions. In addition, to overcome the blurry boundary problem, we propose a new structural loss function to learn clear object boundaries and spatially consistent saliency. The coarse prediction results are effectively refined by these structural information for performance improvements. Extensive experiments on seven saliency detection datasets demonstrate that our approach achieves consistently superior performance and outperforms the very recent state-of-the-art methods.


2021 ◽  
Author(s):  
◽  
Syed Naqvi

<p>For a diverse range of applications in machine vision from social media searches to robotic home care providers, it is important to replicate the mechanism by which the human brain selects the most important visual information, while suppressing the remaining non-usable information.  Many computational methods attempt to model this process by following the traditional model of visual attention. The traditional model of attention involves feature extraction, conditioning and combination to capture this behaviour of human visual attention. Consequently, the model has inherent design choices at its various stages. These choices include selection of parameters related to the feature computation process, setting a conditioning approach, feature importance and setting a combination approach. Despite rapid research and substantial improvements in benchmark performance, the performance of many models depends upon tuning these design choices in an ad hoc fashion. Additionally, these design choices are heuristic in nature, thus resulting in good performance only in certain settings. Consequentially, many such models exhibit low robustness to difficult stimuli and the complexities of real-world imagery.  Machine learning and optimisation technique have long been used to increase the generalisability of a system to unseen data. Surprisingly, artificial learning techniques have not been investigated to their full potential to improve generalisation of visual attention methods.  The proposed thesis is that artificial learning can increase the generalisability of the traditional model of visual attention by effective selection and optimal combination of features.  The following new techniques have been introduced at various stages of the traditional model of visual attention to improve its generalisation performance, specifically on challenging cases of saliency detection:  1. Joint optimisation of feature related parameters and feature importance weights is introduced for the first time to improve the generalisation of the traditional model of visual attention. To evaluate the joint learning hypothesis, a new method namely GAOVSM is introduced for the tasks of eye fixation prediction. By finding the relationships between feature related parameters and feature importance, the developed method improves the generalisation performance of baseline method (that employ human encoded parameters).  2. Spectral matting based figure-ground segregation is introduced to overcome the artifacts encountered by region-based salient object detection approaches. By suppressing the unwanted background information and assigning saliency to object parts in a uniform manner, the developed FGS approach overcomes the limitations of region based approaches.  3. Joint optimisation of feature computation parameters and feature importance weights is introduced for optimal combination of FGS with complementary features for the first time for salient object detection. By learning feature related parameters and their respective importance at multiple segmentation thresholds and by considering the performance gaps amongst features, the developed FGSopt method improves the object detection performance of the FGS technique also improving upon several state-of-the-art salient object detection models.  4. The introduction of multiple combination schemes/rules further extends the generalisability of the traditional attention model beyond that of joint optimisation based single rules. The introduction of feature composition based grouping of images, enables the developed IGA method to autonomously identify an appropriate combination strategy for an unseen image. The results of a pair-wise ranksum test confirm that the IGA method is significantly better than the deterministic and classification based benchmark methods on the 99% confidence interval level. Extending this line of research, a novel relative encoding approach enables the adapted XCSCA method to group images having similar saliency prediction ability. By keeping track of previous inputs, the introduced action part of the XCSCA approach enables learning of generalised feature importance rules. By more accurate grouping of images as compared with IGA, generalised learnt rules and appropriate application of feature importance rules, the XCSCA approach improves upon the generalisation performance of the IGA method.  5. The introduced uniform saliency assignment and segmentation quality cues enable label free evaluation of a feature/saliency map. By accurate ranking and effective clustering, the developed DFS method successfully solves the complex problem of finding appropriate features for combination (on an-image-by-image basis) for the first time in saliency detection. The DFS method enables ground truth free evaluation of saliency methods and advances the state-of-the-art in data driven saliency aggregation by detection and deselection of redundant information.  The final contribution is that the developed methods are formed into a complete system where analysis shows the effects of their interactions on the system. Based on the saliency prediction accuracy versus computational time trade-off, specialised variants of the proposed methods are presented along with the recommendations for further use by other saliency detection systems.  This research work has shown that artificial learning can increase the generalisation of the traditional model of attention by effective selection and optimal combination of features. Overall, this thesis has shown that it is the ability to autonomously segregate images based on their types and subsequent learning of appropriate combinations that aid generalisation on difficult unseen stimuli.</p>


2021 ◽  
Vol 30 (03) ◽  
Author(s):  
Yaqin Zhou ◽  
Qingwu Li ◽  
Yunpeng Ma ◽  
Lulu Chu ◽  
Chang Xu ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yu Liu ◽  
Huaxin Xiao ◽  
Hanlin Tan ◽  
Ping Li

Abstract Considering the significant progress made on RGB-based deep salient object detection (SOD) methods, this paper seeks to bridge the gap between those 2D methods and 4D light field data, instead of implementing specific 4D methods. We observe that the performance of 2D methods changes dramatically with the input refocusing on different depths. This paper attempts to make the 2D methods available for light field SOD by learning to select the best single image from the 4D tensor. Given a 2D method, a deep model is proposed to explicitly compare pairs of SOD results on one light field sample. Moreover, a comparator module is designed to integrate the features from a pair, which provides more discriminative representations to classify. Experiments over 13 latest 2D methods and 2 datasets demonstrate the proposed method can bring about 24.0% and 5.3% average improvement of mean absolute error and F-measure, and outperform state-of-the-art 4D methods by a large margin.


Sign in / Sign up

Export Citation Format

Share Document